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Abstract

This supplementary document includes the complete
derivation of Jacobian matrix in Section 2.2 of our CVPR
2014 paper “Simultaneous Localization and Calibration:
Self-Calibration of Consumer Depth Cameras” [2].

1. Optimization Objective
As stated in the paper, the energy function E(T, C) is

a function of the camera pose trajectory T = {Ti} and a
calibration function C(·). For every frame i, Ti is a rigid
transformation that maps the depth image Di from its local
coordinate frame to the global world frame. C is a trilinear
interpolation function of a control lattice V = {vl} ⊂ P3:

C(p) =
∑
l

γl(p)C(vl), (1)

where {γl(p)} are trilinear interpolation coefficients. They
are computed once for all input points and remain constant
henceforth.

The energy function is defined as:

E(T, C) = Ea(T, C) + λEr(C), (2)

where Ea(T, C) is the alignment term that measures the
point-to-plane distance between corresponding point pairs:

Ea(T, C) =
∑
i,j

∑
(p,q)∈Ki,j

(
(p′ − q′) · n′p

)2
. (3)

Here the points p′ and q′ are points p and q, transformed
from their local coordinate frames to the world frame. We
ignore the distortion effect on normals and directly apply
the rigid transformation Ti on np to obtain n′p:

p′ = TiC(p), (4)
q′ = TjC(q), (5)
n′p ≈ Tinp. (6)
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For clarity, let e = (p,q) denote the corresponding point
pair, Equation (3) can be written as:

Ea(T, C) =
∑
i,j

∑
e∈Ki,j

(
rea
)2
, (7)

where

rea = (p′ − q′) · n′p (8)

=
(
TiC(p)−TjC(q)

)>
Tinp. (9)

The regularization energy term Er(C) is inspired by e-
lasticity theory [1, 3]:

Er(C) =
∑
v∈V

∑
u∈Nv

‖C(u)−vRC(v)u‖2, (10)

whereN (v) is the set of neighbors of v in V and the trans-
form vRC(v) ∈ SE(3) is a local linearization of C at v.
Please refer to Section 3.2 of our ICCV 2013 paper [3] for
detailed derivation of the regularization energy term.

2. Gauss-Newton Method
We minimizeE(T, C) using the Gauss-Newton method.

Let x be the vector of variables that includes all the param-
eters of T and C. The calibration function C is parame-
terized by the calibrated position C(v) of each lattice point
v. The transformations Ti are parameterized by its local
linearization during iteration, as described below.

In iteration 0 the variables are initialized with the vector
x0 that includes the camera poses from an initial rigid align-
ment of the input images {Di} and a stationary function C
that maps all the lattice points to themselves. In each sub-
sequent iteration k + 1, for k ≥ 0, we locally linearize Ti

around Tk
i . Specifically, we parameterize Ti by a 6-vector

ξi = (αi, βi, γi, ai, bi, ci) that represents an incremental
transformation relative to Tk

i . Here (ai, bi, ci) is a trans-
lation vector, which we will denote by ti, and (αi, βi, γi)
can be interpreted as angular velocity, denoted by ωi. Ti is
approximated by a linear function of ξi:

Ti ≈


1 −γi βi ai
γi 1 −αi bi
−βi αi 1 ci

0 0 0 1

Tk
i . (11)
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The full parameter vector is updated in iteration k+ 1 as
follows1:

xk+1 = xk + ∆x. (12)

Here ∆x is a vector that collates {ξi} and {∆C(v)}. It is
computed by solving the following linear system:

J>r Jr∆x = −J>r r. (13)

Here r = r(x) is the residual vector that collects {rea} and
Jr = Jr(x) is its Jacobian, both evaluated at xk. The de-
tailed derivation of the Jacobian matrix will be given in Sec-
tion 3.

Once the adjustment ∆x is computed, Ck(v) is s-
traightforwardly updated by applying the additive incre-
ment ∆C(v):

Ck+1(v) = Ck(v) + ∆C(v). (14)

To update the transformations, we apply Equation (11) and
then map the transformation matrices back into the SE(3)
group, i.e.,

Tk+1
i =


1 0 0 xi
0 1 0 yi
0 0 1 zi
0 0 0 1

 (15)

·


1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1



·


cosβi 0 sinβi 0

0 1 0 0
− sinβi 0 cosβi 0

0 0 0 1



·


cos γi − sin γi 0 0
sin γi cos γi 0 0

0 0 1 0
0 0 0 1

 ·Tk
i .

In the next iteration, we re-parameterize Ti around
Tk+1

i and repeat.

3. Derivation of Jacobian Matrix
The partial derivative of {rea} with respect to C(vl) is

straightforward using Equation (9) and (1):

∂rea
∂C(vl)

=
(
γl(p)Tk

i − γl(q)Tk
j

)>
Tk

i np. (16)

To derive the partial derivative of {rea}with respect to ξi,
we first derive the partial derivative of f(ξi,u) = Tiu and

1Since {ξi} are local linearization around Tk
i , the corresponding part

in xk is 0.

g(ξi,n) = Tin, with respect to ξi. Here u is the homo-
geneous coordinate of any point and n is the homogeneous
coordinate of any unit direction vector (normal). With E-
quation (11), we have:

f(ξi,u) = Tiu ≈ Tk
i u + ωi ×Tk

i u + ti, (17)
g(ξi,n) = Tin ≈ Tk

i n + ωi ×Tk
i n. (18)

Let
[
Tk

i u
]
× and

[
Tk

i n
]
× be the skew-symmetric matrices

form of the cross product with Tk
i u and Tk

i n. The former
equations can be written in the matrix multiplication form:

f(ξi,u) ≈ Tk
i u +

[
−
[
Tk

i u
]
×

∣∣I] ξi, (19)

g(ξi,n) ≈ Tk
i n +

[
−
[
Tk

i n
]
×

∣∣0] ξi, (20)

where I is the 3× 3 identity matrix and 0 is the 3× 3 zero
matrix. Their Jacobian matrices with respect to ξi are:

∂f

∂ξi
≈

[
−
[
Tk

i u
]
×

∣∣I] , (21)

∂g

∂ξi
≈

[
−
[
Tk

i n
]
×

∣∣0] . (22)

Using this result on Equation (4), (5), and (6), we have:

∂p′

∂ξi
≈
[
−
[
Tk

iC
k(p)

]
×

∣∣I] , ∂p′

∂ξj
= 0, (23)

∂q′

∂ξi
= 0,

∂q′

∂ξj
≈
[
−
[
Tk

iC
k(q)

]
×

∣∣I] , (24)

∂n′p
∂ξi
≈
[
−
[
Tk

i np

]
×

∣∣0] , ∂n′p
∂ξj

= 0. (25)

Using product rule, we have:

∂rea
∂ξi

= (p′ − q′)>
(
∂n′p
∂ξi

)
+ (n′p)>

(
∂p′

∂ξi
− ∂q′

∂ξi

)
≈
[
Tk

i np ×
(
Tk

iC
k(p)−Tk

jC
k(q)

) ∣∣0]
+
[
Tk

iC
k(p)×Tk

i np

∣∣Tk
i np

]
=
[
Tk

jC
k(q)×Tk

i np

∣∣Tk
i np

]
, (26)

∂rea
∂ξj

= (p′ − q′)>
(
∂n′p
∂ξj

)
+ (n′p)>

(
∂p′

∂ξj
− ∂q′

∂ξj

)
≈
[
Tk

i np ×Tk
jC

k(q)
∣∣−Tk

i np

]
. (27)
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