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Abstract

This supplementary document includes the complete
derivation of Jacobian matrix in Section 2.2 of our CVPR
2014 paper “Simultaneous Localization and Calibration:
Self-Calibration of Consumer Depth Cameras” [2]].

1. Optimization Objective

As stated in the paper, the energy function E(T,C) is
a function of the camera pose trajectory T = {T;} and a
calibration function C'(-). For every frame i, T; is a rigid
transformation that maps the depth image D; from its local
coordinate frame to the global world frame. C'is a trilinear
interpolation function of a control lattice V = {v;} C P3:

C(p) =Y _w(P)C(v), (1)
l

where {7;(p)} are trilinear interpolation coefficients. They
are computed once for all input points and remain constant
henceforth.

The energy function is defined as:

E(Ta C) - Ea(Ta C) + )‘Er<c)v 2

where E,(T,C) is the alignment term that measures the
point-to-plane distance between corresponding point pairs:

E.(T,C)=)_ >

3 (P,a)€X;,;

(P —d)-n)°. B

Here the points p’ and q’ are points p and q, transformed
from their local coordinate frames to the world frame. We
ignore the distortion effect on normals and directly apply

the rigid transformation T; on ny, to obtain ny,:
p’ = TC(p), )
q = T,;C(a), 5
n, ~ Tnp. (6)
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For clarity, let e = (p, q) denote the corresponding point
pair, Equation (3) can be written as:

EJ(T,C)=Y" > (%)%, )

1,7 eE)Ci‘j
where
re = (p'—d)-n ®)
T
= (TiC(p) — T;C(q)) Tin,. 9)

The regularization energy term E,.(C) is inspired by e-
lasticity theory [1} 3]]:

E(C)=> > [Cu) —YRewul?, (10)
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where AV (v) is the set of neighbors of v in V and the trans-
form YR¢(v) € SE(3) is a local linearization of C' at v.
Please refer to Section 3.2 of our ICCV 2013 paper [3] for
detailed derivation of the regularization energy term.

2. Gauss-Newton Method

We minimize E(T, C) using the Gauss-Newton method.
Let x be the vector of variables that includes all the param-
eters of T and C. The calibration function C' is parame-
terized by the calibrated position C'(v) of each lattice point
v. The transformations T; are parameterized by its local
linearization during iteration, as described below.

In iteration O the variables are initialized with the vector
xY that includes the camera poses from an initial rigid align-
ment of the input images {D; } and a stationary function C
that maps all the lattice points to themselves. In each sub-
sequent iteration k + 1, for £ > 0, we locally linearize T;
around T¥. Specifically, we parameterize T; by a 6-vector
& = (ai, Bi, i, a4, bi, ¢;) that represents an incremental
transformation relative to T¥. Here (a;, b;,c;) is a trans-
lation vector, which we will denote by t;, and («;, 8;, V:)
can be interpreted as angular velocity, denoted by w;. T; is
approximated by a linear function of &;:
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e Vi I —a; b k
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The full parameter vector is updated in iteration k + 1 as

follows't
xF = xF + Ax. (12)

Here Ax is a vector that collates {{;} and {AC(v)}. Ttis
computed by solving the following linear system:

J I Ax=-J]r. (13)

Here r = r(x) is the residual vector that collects {r$} and
J. = J.(x) is its Jacobian, both evaluated at x*. The de-
tailed derivation of the Jacobian matrix will be given in Sec-
tion 3l

Once the adjustment Ax is computed, C*(v) is s-
traightforwardly updated by applying the additive incre-
ment AC(v):

CMl(v) = CF(v) + AC(v). (14)

To update the transformations, we apply Equation (II)) and
then map the transformation matrices back into the SFE(3)
group, i.e.,

k+1 _ | 01 0 w
T =10 01 2 (15
0 0 0 1
[ 1 0 0 0
0 cosa; —sina; O
0 sina; cosa; O
| O 0 0 1
[ cosp; 0 sinB; O
0 1 0 0
—sinf; 0 cosfB; O
i 0 0 0 1
[ cosy; —sing; 00
siny; cosy; 0 O k
0 0 1 0 T
| O 0 0 1
In the next iteration, we re-parameterize T; around
Tf“ and repeat.

3. Derivation of Jacobian Matrix

The partial derivative of {r¢} with respect to C'(v;) is
straightforward using Equation (9) and (T):
ore

sty = (PITE = (@T)) Ting. (16

To derive the partial derivative of {r$} with respect to &;,
we first derive the partial derivative of f(¢;,u) = T;u and

ISince {¢;} are local linearization around Tf, the corresponding part
in x* is 0.

g(&;,n) = T;n, with respect to &;. Here u is the homo-
geneous coordinate of any point and n is the homogeneous
coordinate of any unit direction vector (normal). With E-
quation (TTI), we have:

Thu+w; x TFa+t;, (17)
Thn + w; x Thn. (18)

f(&,u)=T,u =
g(gia Il) = Tin

Let [Tju]  and [Tjn] be the skew-symmetric matrices

Q

form of the cross product with T¥u and T¥n. The former
equations can be written in the matrix multiplication form:

f(¢u) ~ T§u+[— [Tfu]xll}fi, (19)
g(fivn)

where I is the 3 x 3 identity matrix and O is the 3 x 3 zero
matrix. Their Jacobian matrices with respect to &; are:

Q

Thn + [— [Thn] |0} & (20)

% ~ |- [Tl 1], @1
% ~ |- [Tn], [o]. 22)
Using this result on Equation @), (3), and (6), we have:
Z‘;' ~ [— [TECH(p)] 11} 7 ‘Zg —o0. 3
gg e 32 ~ [ ITictl 1)L e
%Ig ~ [~ [Ting], [0 . ?92’ 0. (25

Using product rule, we have:

({97'2 o / NT oy INT 8p/ aq/
og, — P9 (8&5> ) <8& B a§i>
~ [Tin, x (TEC*(p) — THC¥(q)) |0]

+ [TfC’k(p) X Tfnp|Tfnp]

= [T5C*(q) x Tinp|Tiny) (26)
Org / /T(an;> , T(ap' aq')
= — _ _|_ n -
D¢, (P —d) 7%, (np) o€~ o,
~ [Tinp x TC*(q)| — Tinp] . 27)
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