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Abstract

We present an approach to indoor scene reconstruction
from RGB-D video. The key idea is to combine geomet-
ric registration of scene fragments with robust global opti-
mization based on line processes. Geometric registration
is error-prone due to sensor noise, which leads to alias-
ing of geometric detail and inability to disambiguate dif-
ferent surfaces in the scene. The presented optimization ap-
proach disables erroneous geometric alignments even when
they significantly outnumber correct ones. Experimental re-
sults demonstrate that the presented approach substantially
increases the accuracy of reconstructed scene models.

1. Introduction
High-fidelity reconstruction of complete indoor scenes

is known as a particularly challenging problem [19, 29, 64,
7]. Many indoor reconstruction systems make simplifying
assumptions and forfeit detail in the reconstructed model
[19, 64, 7], rely on user interaction [17], or both [37, 53].
Other systems rely on substantial hardware setups based on
LiDAR scanners [11, 59].

The availability of consumer depth cameras provides an
opportunity to develop robust reconstruction systems but
does not in itself solve the associated challenges. While
3D models of real-world objects can now be created easily
[46, 70], the same combination of quality and reliability has
yet to be achieved for complete scenes. Unlike an object,
which can be entirely in the field of view of the camera,
a large scene must be reconstructed from views acquired
along a complex trajectory, each view exposing only a small
part of the environment. Camera paths that thoroughly im-
age all surfaces at close range lead to significant odometry
drift and the necessity to match and register different views
globally.

Prior work on scene reconstruction with consumer depth
cameras recognized the importance of global registration
[29, 18, 69, 62, 65]. Nevertheless, no prior system appears
to be sufficiently reliable to support automatic reconstruc-
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tion of complete indoor scenes at a quality level appropriate
for particularly demanding applications. This is evidenced
by the recent effort of Xiao et al. to reconstruct a large num-
ber of indoor scenes. Due to the unreliability of automatic
scene reconstruction pipelines, the authors resorted to man-
ual labeling to establish correspondences between different
views. (“existing automatic reconstruction methods are not
reliable enough for our purposes.” [65])

In this work, we present a fully automatic scene recon-
struction pipeline that matches the reconstruction quality
obtained with manual assistance by Xiao et al. and signifi-
cantly exceeds the accuracy of prior automatic approaches
to indoor reconstruction. An example reconstruction pro-
duced by our approach is shown in Figure 1. Our pipeline is
geometric: pairs of local scene fragments are registered and
a global model is constructed based on these pairwise align-
ments [31]. A critical weakness of such pipelines that we
address is the low precision of geometric registration. Geo-
metric registration algorithms are error-prone due to sensor
noise, which leads to aliasing of fine geometric details and
inability to disambiguate different locations based on local
geometry. The difficulty is compounded by the necessity to
register loop closure fragments that have low overlap. In
practice, false pairwise alignments can outnumber correctly
aligned pairs.

Our approach resolves inconsistencies and identifies cor-
rect alignments using global optimization based on line pro-
cesses. Line processes were introduced in the context of
image restoration as a means for automatically identify-
ing discontinuities as part of a single global optimization
[22, 21]. They are closely related to robust estimation [4].
The advantage of the line process formulation is that the
optimization objective retains a least-squares form and can
be optimized by a standard high-performance least-squares
solver. We show that this framework is extremely effective
in dealing with pairwise registration errors. Our implemen-
tation automatically prunes false pairwise alignments even
when they significantly outnumber correct ones. Extensive
experiments demonstrate that our approach substantially in-
creases reconstruction accuracy.

Our work contains a number of supporting contributions
of independent interest. First, we provide infrastructure for
rigorous evaluation of scene reconstruction accuracy, aug-
menting the ICL-NUIM dataset [26] with challenging cam-
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Trajectory

Figure 1. A complete apartment reconstructed by the presented approach. The estimated camera trajectory is 151.6 meters long, folded
into a diameter of 8.3 meters.

era trajectories and a realistic noise model. Second, we per-
form a thorough quantitative evaluation of surface registra-
tion algorithms in the context of scene reconstruction; our
results indicate that well-known algorithms perform sur-
prisingly poorly and that algorithms introduced in the last
few years are outperformed by older approaches. Third, in
addition to accuracy measurements on synthetic scenes we
describe an experimental procedure for quantitative evalu-
ation of reconstruction quality on real-world scenes in the
absence of ground-truth data.

2. Related Work

The influential KinectFusion system demonstrated real-
time dense reconstruction with a consumer depth camera
[46], building on earlier work on range image integration
[14], visual odometry [15, 48, 38], and real-time 3D recon-
struction [51, 49, 45]. The original KinectFusion system

used a flat voxel grid and was limited to small volumes, but
this limitation has since been removed [9, 61, 47]. Alterna-
tive odometry algorithms that can improve the accuracy of
the system have also been proposed [6, 61]. These systems
do not detect loop closures and are limited either to com-
pact workspaces or to fairly simple walk-along trajectories.
Without dedicated loop closure handling, the complex cam-
era paths that are necessary for comprehensive imaging of
furnished indoor scenes lead to broken reconstructions [69].

A number of RGB-D reconstruction systems with inte-
grated loop closure handling have been developed [29, 18,
28, 56, 62]. They all detect loop closures by matching in-
dividual RGB-D images using either visual features such
as SIFT or SURF keypoints or through dense image regis-
tration. This approach delivers real-time performance but
assumes that different images that observe the same loca-
tion in the scene are sufficiently similar. It is thus liable to
miss loop closures that are not certified by matching images,



as illustrated in Figure 2. Our setting is different in that
real-time performance is not a requirement. High-quality
off-line scene reconstruction is valuable in many applica-
tion domains [19, 65, 69, 59].

Off-line global optimization for high-fidelity RGB-D re-
construction was previously considered by Zhou et al. [69,
72, 71]. Their work relied on an initialization provided by
an off-the-shelf loop closure detection module [18]. It was
thus prone to failure when the provided loop closure set
was incomplete. Our work presents an integrated approach
to loop closure detection and handling based on geometric
registration and robust optimization.

Geometric registration of range data has been exten-
sively studied [44]. A typical registration pipeline sam-
ples constellations of points on one surface and uses match-
ing configurations on the other surface to compute can-
didate transformations. The challenge is that exhaustive
sampling and matching are prohibitively expensive. In
the past decade researchers have studied local shape de-
scriptors that can be used for pruning and correspondence
[20, 52, 55, 24], and proposed different types of constel-
lations [2, 16, 43]. Nevertheless, misregistrations are still
common in practice. Our approach uses global optimiza-
tion to make the reconstruction pipeline robust to geometric
registration errors.

Global optimization of range scan poses based on hy-
pothesized pairwise relations was introduced by Lu and
Milios [41] and is commonly used in robotics [13, 33, 23].
In our setting, all pairwise relations are noisy and the set
of relations is heavily contaminated by outliers. Huber and
Hebert [32] described an algorithm that rejects outliers by
searching for a maximally consistent spanning tree in the
pairwise relation graph; a similar technique has been used
for reassembling fractured objects [30]. This approach as-
sumes that the scene can be covered by accurate pairwise
alignments, which is not true in our case.

Our solution is based on line processes [4]. This for-
mulation enables effective outlier rejection using a high-
performance least-squares solver. A single optimization
aligns the scene and identifies the outliers even if they
outnumber veridical matches. Related formulations were
recently introduced in the context of robot localization
[57, 58, 40, 1] and bundle adjustment [66]. In structure
from motion estimation, robustness can be increased us-
ing appropriate penalty functions [12, 27, 8] or by identi-
fying inconsistent substructures among pairwise relations
between camera poses [67, 68, 50, 63]. Our work is re-
lated but focuses on dense scene reconstruction from range
video. We present a dedicated formulation for dense surface
reconstruction that identifies outliers by directly optimizing
for surface alignment, using an objective that efficiently in-
corporates dense correspondence constraints. Our exper-
iments demonstrate that the presented formulation signif-

Figure 2. A challenging loop closure in the mit 32 d507 scene
from the SUN3D dataset [65]. Top: this loop closure is not cer-
tified by sufficiently similar images and is missed by prior scene
reconstruction pipelines. Bottom: our approach matches the un-
derlying geometry and successfully detects the loop closure. A
complete reconstruction of this scene is shown in Figure 4.

icantly outperforms prior robust optimization frameworks
that do not incorporate dense surface alignment.

3. Overview

Fragment construction. Individual range images are
noisy and incomplete. To derive more reliable information
on local surface geometry, we partition the input RGB-D
video into k-frame segments (k=50 in all experiments), use
RGB-D odometry to estimate the camera trajectory [35],
and fuse the range images to obtain a surface mesh for each
segment [14]. These scene fragments integrate out some of
the noise in the range data and yield more reliable normal
information [69, 72]. They have a larger footprint in the
scene than individual images without suffering from signif-
icant odometry drift. Fragments are analogous to submaps,
which are used in a number of robotic mapping systems
[25, 5, 54, 10]. Let Pi = {p} be the vertex set of frag-
ment i and let Ri be a rigid transformation that aligns Pi to
Pi+1, computed by RGB-D odometry.

Geometric registration. Due to odometry drift, simply
using the transformations {Ri} to localize the fragments
yields broken reconstructions in which non-consecutive
fragments that cover overlapping parts of the scene are mis-
aligned. For this reason, we test each pair of fragments to
find overlapping pairs. A geometric registration algorithm
is run on each pair (Pi,Pj). If the algorithm succeeds in
aligning the fragments with sufficient overlap, a candidate



loop closure is established between fragments i and j with
an associated transformation Tij .

Robust optimization. Many of the putative loop clo-
sures found by pairwise registration are false positives. We
identify these spurious loop closures by optimizing a dense
surface registration objective augmented by a line process
over the loop closure constraints. A single least-squares
objective jointly estimates the global configuration of the
scene and the validity of each constraint. This formulation
enables reliable pruning of erroneous constraints even when
they substantially outnumber genuine loop closures.

Final model. After the final set of loop closures is iden-
tified, the odometry and loop closure transformations are
refined using ICP. Pose graph optimization is used to obtain
the final fragment poses {Ti} in the global frame [39]. Op-
tional nonrigid refinement can be used to further improve
the registration [71]. The registered fragments are fused
into a global mesh model by volumetric integration [14].

4. Geometric Registration

We begin with a quantitative analysis of state-of-the-art
surface registration algorithms on indoor scene data. This
analysis motivates our approach. The analysis was per-
formed on the augmented ICL-NUIM dataset, which aug-
ments the synthetic scenes of Handa et al. [26] with com-
plex camera trajectories and a realistic noise model. The
dataset is described in detail in supplementary material.

Given an input range video, a set of fragments {Pi} was
constructed as described in Section 3. Consider a fragment
pair (Pi,Pj), with Pi being the smaller in terms of surface
area. This pair was identified as a ground-truth loop clo-
sure if their overlap in the ground-truth scene covers more
than 30% of Pi. In this case, a ground-truth transformation
T∗ij and a set of point-to-point correspondences K∗ij were
associated with this pair.

Each algorithm was run on every fragment pair (Pi,Pj).
A computed transformation Tij was retained as a proposed
loop closure if over 30% of TijPi overlaps with Pj . Each
algorithm’s proposed loop closures were used to measure
its recall and precision. For this measurement it is not
sufficient to consider the intersection of the proposed and
ground-truth loop closure sets, since an algorithm may have
correctly determined that there is a loop closure between Pi

and Pj but produced an erroneous transformation. There-
fore the candidate transformation Tij was compared to the
ground-truth transformation T∗ij . To avoid arbitrary choices
in weighting different degrees of freedom in transforma-
tion space, we directly measured the effect of Tij on the
ground-truth correspondences K∗ij . A transformation is ac-
cepted if it brings these ground-truth correspondence pairs
into alignment. Specifically, Tij is considered a true pos-
itive if the RMSE of the ground-truth correspondences is

below a threshold τ :
1

|K∗ij |
∑

(p∗,q∗)∈K∗
ij

‖Tijp
∗ − q∗‖2 < τ2.

We used a fairly liberal threshold τ = 0.2 meters in all
experiments.

Table 1 lists the average recall and precision of different
algorithms on the augmented ICL-NUIM dataset. OpenCV
is a recent OpenCV implementation of the surface regis-
tration algorithm of Drost et al. [16]. All look-up tables
were precomputed for accelerated performance. 4PCS is
the algorithm of Aiger et al. [2] and Super4PCS is the
recent algorithm of Mellado et al. [43]. We worked with
the authors of Super 4PCS to determine the best parame-
ter values for their approach. PPF Integral is our cus-
tom implementation that combines the point pair features of
Drost et al. [16] with subsampling based on integral invari-
ants [42, 20]. PCL is a Point Cloud Library implementation
of the algorithm of Rusu et al. [52, 3]. PCL modified is
our variant of Rusu’s algorithm, described in supplementary
material.

OpenCV 4PCS Super
4PCS

PPF
Integral PCL PCL

modified
Recall (%) 5.3 20.0 17.8 32.5 44.9 59.2

Precision (%) 1.6 8.9 10.4 7.1 14.0 19.6
Runtime (sec) 10 380 62 83 3 8

Table 1. Performance of geometric registration algorithms. Aver-
age running time for aligning two fragments was measured using
a single thread on an Intel Core i7-3770 CPU clocked at 3.5 GHz.

Surprisingly, the algorithm of Rusu et al. outperforms
all other approaches, including more recent ones. Based
on this experiment, our pipeline uses the PCL modified
algorithm for pairwise geometric registration.

As the results in Table 1 indicate, the precision of even
the highest-performing geometric registration algorithms is
below 20%. We attribute this primarily to the limited dis-
criminative power of surface geometry that was sampled at
limited range, resolution, and field of view, and corrupted
by noise and distortion. This aliasing permits reasonable re-
call but limits precision. As illustrated in Figure 3(a), some
false positive alignments are very plausible when consid-
ered independently. Thus, rather than attempt to develop a
pairwise surface registration procedure with high recall and
near-perfect precision, we show in Section 5 that these char-
acteristics can be achieved by a global analysis of the scene.

5. Robust Optimization
The analysis in Section 4 indicates that most loop clo-

sures identified by pairwise surface matching are false posi-
tives. We now show that global optimization can be used to
achieve near-perfect loop closure precision with almost no
decrease in recall.



(a) Erroneous alignments (b) Optimization with all pairwise alignments (c) Optimization with line processes

Figure 3. The precision problem, illustrated on the Living room 1 sequence from the augmented ICL-NUIM dataset. (a) False positive
alignments of fragment pairs. Note that the alignments look plausible. (b) Pose graph optimization with all pairwise alignments identified
by geometric registration. (c) Optimization with line processes.

Consider a pose graph with vertices {Pi} and edges
{Ri} ∪ {Tij} [23]. Our goal is to compute a set of poses
T = {Ti} that localizes the fragments in the global coor-
dinate frame. This can be expressed as an objective of the
form

E(T) =
∑
i

f(Ti,Ti+1,Ri) +
∑
i,j

f(Ti,Tj ,Tij). (1)

The challenge is that most of the transformations Tij are
incorrect and will corrupt the optimized configuration, as
shown in Figure 3(b). We thus add a line process L = {lij}
over the putative loop closures. The variable lij ranges over
[0, 1] and models the validity of the corresponding loop clo-
sure. L and T are optimized jointly:

E(T,L) =
∑
i

f(Ti,Ti+1,Ri)

+
∑
i,j

lijf(Ti,Tj ,Tij)

+ µ
∑
i,j

Ψ(lij). (2)

The prior term Ψ(lij) expresses a belief that proposed loop
closures are genuine: Ψ(lij) = (

√
lij − 1)2. Intuitively,

this term aims to maximize the number of selected loop
closures (lij → 1). However, if a constraint distorts the
configuration and causes a disproportionate increase in the
alignment terms it can be smoothly disabled (lij → 0).

An alignment term f(Ti,Tj ,X) measures the inconsis-
tency between poses Ti and Tj and relative pose X. We
define this function in terms of dense surface alignment. Let
Kij be the set of correspondence pairs between XPi and Pj

that are within distance ε = 0.05 m. (εwas set based on typ-
ical sensor noise magnitudes [36].) Define f(Ti,Tj ,X) as
the sum of squared distances between corresponding points
in TiPi and TjPj :

f(Ti,Tj ,X) =
∑

(p,q)∈Kij

‖Tip−Tjq‖2 (3)

≈
∑

(p,q)∈Kij

‖Tip−TjXp‖2 (4)

=
∑

(p,q)∈Kij

‖X−1T−1j Tip− p‖2. (5)

Line (4) uses the proximity of correspondence
pairs, which is guaranteed by construction:
(p,q) ∈ Kij ⇒ ‖Xp− q‖ < ε.

Use a standard local parameterization to represent
X−1T−1j Ti as a 6-vector ξ = (ω, t) = (α, β, γ, a, b, c),
which collects a rotational component ω and a translation t.
Locally, when T−1j Ti ≈ X,

X−1T−1j Ti ≈


1 −γ β a
γ 1 −α b
−β α 1 c
0 0 0 1

 . (6)

Thus

X−1T−1j Tip ≈ p + ω × p + t.

Equation (5) can be locally approximated as

f(Ti,Tj ,X) ≈
∑

(p,q)∈Kij

‖ω × p + t‖2

=
∑

(p,q)∈Kij

∥∥[− [p]× | I
]
ξ
∥∥2 , (7)

where [p]× is the skew-symmetric matrix form of the cross
product with p, and I is the 3×3 identity matrix. Define
Gp =

[
− [p]× | I

]
.



f(Ti,Tj ,X) ≈
∑

(p,q)∈Kij

‖Gpξ‖2

=
∑

(p,q)∈Kij

ξ>G>pGpξ

= ξ>

 ∑
(p,q)∈Kij

G>pGp

 ξ. (8)

Since Gp is constant, f(Ti,Tj ,X) can be approximated
by the quadratic form ξ>Λξ, where the covariance

Λ =
∑

(p,q)∈Kij

G>pGp (9)

need only be computed once for each alignment term.
The parameter µ balances the strength of the prior term

and the alignment terms. Given the above derivation of the
alignment terms, µ is defined to be proportional to the aver-
age cardinality of the correspondence sets Kij , denoted by
κ: µ = τ2κ. τ is the distance threshold used in Section 4
and has the same underlying semantics. Intuitively, when an
error f(Ti,Tj ,X) exceeds µ, it outweighs the correspond-
ing prior term.

The objective (2) is optimized using g2o [39] and loop
closures with lij < 0.25 are pruned. The remaining loop
closures are used to construct the final model as described
in Section 3.

This formulation is extremely effective. Table 2 sum-
marizes the effect of the presented formulation on the aug-
mented ICL-NUIM dataset. The optimization increases the
average precision of the loop closure set by a factor of five,
from below 20% to 97.7%. The average recall decreases by
only 1.4%.

Before pruning After pruning
Recall (%) Precision (%) Recall (%) Precision (%)

Living room 1 61.2 27.2 57.6 95.1
Living room 2 49.7 17.0 49.7 97.4

Office 1 64.4 19.2 63.3 98.3
Office 2 61.5 14.9 60.7 100.0

Average 59.2 19.6 57.8 97.7

Table 2. The effect of robust optimization. The optimization in-
creases the average precision of the loop closure set from 19.6%
to 97.7%.

The basic formulation (2) is an application of line pro-
cesses [4] and has been used for pose graph optimization be-
fore [57]. Our work differs by incorporating surface align-
ment into the objective. To evaluate the impact of this for-
mulation, we measured the loop closure precision achieved
by the basic switchable constraints approach of Sünderhauf
and Protzel (SC) [57], the expectation maximization algo-
rithm of Lee et al. (EM) [40], and our formulation. The
results on the augmented ICL-NUIM dataset are reported
in Table 3. The prior approaches do improve the preci-
sion of the loop closure set, but the improvement is not

sufficient for satisfactory reconstruction, as shown in Sec-
tion 6.2. Our formulation achieves near-perfect precision
and significantly improves reconstruction accuracy.

Original SC [57] EM [40] Ours
Living room 1 27.2 54.6 39.6 95.1
Living room 2 17.0 23.5 20.5 97.4

Office 1 19.2 39.6 33.7 98.3
Office 2 14.9 25.2 19.7 100.0
Average 19.6 35.7 28.4 97.7

Table 3. The effect of surface alignment modeling. From left to
right: precision of the loop closure set without pruning, optimiza-
tion using basic switchable constraints [58], optimization using
expectation maximization [40], and optimization using our formu-
lation.

6. Evaluation
6.1. Datasets

Augmented ICL-NUIM dataset. Our first dataset is
based on the synthetic environments provided by Handa et
al. [26]. The availability of ground-truth surface geome-
try enables precise measurement of reconstruction accuracy.
The dataset includes two models of indoor environments: a
living room and an office. We have augmented the dataset
in a number of ways to adapt it for evaluation of complete
scene reconstruction pipelines. We have verified with the
authors that these extensions are in line with the intended
usage of the dataset. Our experiments are conducted on four
input sequences that model thorough handheld imaging for
the purpose of comprehensive reconstruction: Living room
1, Living room 2, Office 1, and Office 2. The augmented
dataset is described in detail in supplementary material.

SUN3D dataset. Our second dataset is based on the
SUN3D database of indoor scenes [65]. The original dataset
released by Xiao et al. includes an off-line system for au-
tomatic scene reconstruction based on bundle adjustment,
which we use for comparison. It also provides a number of
reconstructions that were created with manual assistance,
using an interactive interface that lets the user establish
object-level correspondences across the input video. Xiao
et al. provided models of eight scenes reconstructed with
such manual assistance. We focus on these scenes, since the
manually-assisted reconstructions are a useful reference.

Running time. Running times for all steps of our
pipeline are reported in supplementary material.

6.2. Synthetic scenes

To evaluate surface reconstruction accuracy on ICL-
NUIM scenes we use the error measures proposed by Handa
et al., specifically the mean and median of the distances of
the reconstructed surfaces to the ground-truth surfaces. For
each sequence we evaluate four reconstruction pipelines:
Kintinuous [61], DVO SLAM [34], the automatic bundle



(a) Kintinuous (b) DVO SLAM

(c) SUN3D SfM (d) Our result (e) Optional non-rigid refinement

Figure 4. Reconstruction of the mit 32 d507 scene from the SUN3D dataset. (a) Reconstruction produced by Kintinuous [61]. (b) Recon-
struction produced by DVO SLAM [34]. (c) Reconstruction produced by the off-line RGB-D structure-from-motion pipeline of Xiao et
al. [65]. (d) Reconstruction produced by our approach. (e) An optional non-rigid refinement of our result using SLAC [71].

adjustment pipeline provided by Xiao et al. [65] (SUN3D
SfM), and our approach. Qualitative results are shown in
supplementary material. For reference, we also measure the
accuracy of a model obtained by fusing the input depth im-
ages along the ground-truth trajectory (GT trajectory); these
depth images are affected by the simulated sensor noise and
the reconstructed model is thus imperfect. Mean distances
are reported in Table 4, median distances in supplementary
material. The presented approach considerably outperforms
the other reconstruction pipelines. The average mean error
is reduced by a factor of 2 relative to the closest alternative
approach (SUN3D SfM). The average median error is re-
duced by a factor of 2.7. Note that this is a direct evaluation
of the metric accuracy of reconstructed models.

Kintin-
uous

DVO
SLAM

SUN3D
SfM Ours GT

trajectory
Living room 1 0.22 0.21 0.09 0.04 0.04
Living room 2 0.14 0.06 0.07 0.07 0.04

Office 1 0.13 0.11 0.13 0.03 0.03
Office 2 0.13 0.10 0.09 0.04 0.03

Average 0.16 0.12 0.10 0.05 0.04

Table 4. Reconstruction accuracy on ICL-NUIM sequences.
Mean distance of each reconstructed model to the ground-truth
surface (in meters). Our approach reduces the average error by a
factor of 2 relative to the closest alternative approach.

For completeness, we have also measured the accuracy
of the estimated camera trajectories using the RMSE met-
ric described by Handa et al. The results are reported in

supplementary material. Trajectories estimated by our ap-
proach are considerably more accurate, with average RMSE
reduced by a factor of 2.2 relative to the closest alternative
approach. Note that trajectory accuracy is only an indirect
measure of reconstruction accuracy: the metric surface ac-
curacy measurements reported in Table 4 are more informa-
tive.

We have also conducted a controlled evaluation of the
effects of different components of our pipeline on final re-
construction accuracy. Specifically, we substituted the ge-
ometric loop closure detection pipeline presented in Sec-
tion 4 with the state-of-the-art image-based pipeline of Kerl
et al. [34]. (For these experiments, all settings for image-
based loop closure [34] were set to maximize accuracy, and
loop closure detection was performed between every single
pair of frames.) Independently, we substituted the robust
optimization formulation presented in Section 5 with ba-
sic switchable constraints [57] or expectation maximization
[40]. (These algorithms were also considered in Section 5.)
The results are reported in Table 5. The presented pipeline
yields much higher reconstruction accuracy.

6.3. Real-world scenes

Experimental procedure. Quantitative evaluation on
real-world scenes is challenging because there is no ground-
truth surface model. We have therefore developed and val-
idated a perceptual evaluation procedure. Extensive pair-
wise comparisons were collected for all pairs of recon-



SC [57] EM [40] Ours
[34] geometric [34] geometric

Living room 1 0.25 0.32 0.46 0.66 0.04
Living room 2 0.26 0.40 0.26 0.65 0.07

Office 1 0.11 0.36 0.22 0.56 0.03
Office 2 0.52 0.27 0.56 0.48 0.04
Average 0.28 0.34 0.35 0.59 0.05

Table 5. Controlled evaluation of different components of the
presented pipeline. Reconstruction accuracy on ICL-NUIM se-
quences: mean distances to ground-truth models, in meters. Re-
placing our robust optimization formulation with basic switchable
constraints (SC) or expectation maximization (EM) results in sig-
nificant degradation of reconstruction accuracy.

structed models for each input sequence. Experiments were
conducted using Amazon Mechanical Turk. The pairwise
comparison interface and the experimental protocol are de-
scribed and demonstrated in detail in supplementary ma-
terial. The collected pairwise comparisons were used to
compute a numerical score for each reconstructed model via
Balanced Rank Estimation (BRE) [60]. The BRE scores are
in the range [−1, 1], higher is better.

Validation. The experimental procedure was used to
collect pairwise comparisons and compute BRE scores for
the ICL-NUIM sequences. We evaluated models recon-
structed by Kintinuous, DVO SLAM, SUN3D SfM, and
our approach. For reference, we also evaluated models
produced by integration of the noisy input data along the
ground-truth trajectory. 8,960 pairwise comparisons were
collected. The resulting BRE scores are shown in Table 6.
The order of the average BRE scores is identical to the or-
der of the average mean ground-truth distances reported in
Table 4. Note that the BRE scores are not linearly related
to the ground-truth distance measures, nor can they be since
the distance measures are in the range [0,∞) and the BRE
scores are in the range [−1, 1].

Kintin-
uous

DVO
SLAM

SUN3D
SfM Ours GT

trajectory
Living room 1 -0.53 -0.90 0.02 0.47 0.94
Living room 2 -0.89 -0.65 -0.13 0.66 0.89

Office 1 -0.71 -0.41 -0.15 0.09 0.98
Office 2 -0.83 -0.57 -0.11 0.58 0.90

Average -0.74 -0.63 -0.09 0.45 0.93

Table 6. Perceptual evaluation on ICL-NUIM sequences. BRE
scores computed from pairwise comparisons performed on Ama-
zon Mechanical Turk. The order of the average BRE scores is
identical to the order of the average mean and median ground-truth
distances reported in Table 4 and in supplementary material.

Experimental results. The same experimental proce-
dure was applied to the eight SUN3D sequences. We eval-
uated models reconstructed by Kintinuous, DVO SLAM,
SUN3D SfM, and our approach. For reference, we also
included the manually-assisted reconstructions provided by
Xiao et al. 17,640 pairwise comparisons were collected.

The resulting BRE scores are shown in Table 7. The
presented approach outperforms all other automatic recon-
struction pipelines. It is also ranked more highly than the
manually-assisted reconstructions on 6 out of 8 sequences.
We ascribe this to limitations of the SUN3D interactive la-
beling interface, which focuses on object labeling and es-
tablishes only region-level correspondences. Reconstructed
models for one of the scenes are shown in Figure 4.

DVO
SLAM

Kintin-
uous

SUN3D
SfM Ours SUN3D

manual
hotel umd -0.61 -0.45 -0.02 0.66 0.56
harvard c5 -0.49 -0.01 -0.65 0.94 0.11
harvard c6 -0.97 0.05 -0.01 0.96 -0.15
harvard c8 -0.70 -0.61 0.39 0.65 0.46

mit 32 d507 -0.78 -0.28 -0.02 0.74 0.36
mit 76 studyroom -0.52 -0.47 0.35 0.50 0.19
mit dorm next sj -0.26 -0.20 -0.23 0.10 0.65

mit lab hj -0.12 -0.57 0.03 0.22 0.50

Average -0.56 -0.32 -0.02 0.60 0.33

Table 7. Perceptual evaluation on SUN3D scenes. BRE scores
computed from pairwise comparisons performed on Amazon Me-
chanical Turk. The presented approach outperforms all other au-
tomatic reconstruction pipelines.

7. Conclusion
We presented an approach to scene reconstruction from

RGB-D video. The key idea is to combine geometric reg-
istration with global optimization based on line processes.
The optimization makes the pipeline robust to erroneous ge-
ometric alignments, which are unavoidable due to aliasing
in the input. Experimental results demonstrate that the pre-
sented approach significantly improves the fidelity of indoor
scene models produced from consumer-grade video.

The presented pipeline is not foolproof. First, if the input
video does not contain loop closures that indicate global ge-
ometric relations, odometry drift can accumulate and distort
the reconstructed model. Real-time feedback that guides
the operator to close loops would help. We believe that the
presented approach can be adapted for real-time operation,
which would assist the acquisition of complete scene mod-
els. Second, our pipeline does not take into account the pos-
sibility of catastrophic odometry failure, which would result
in missing or misshapen fragments. This could be addressed
by modeling uncertainty not only at the inter-fragment level
but also in the individual fragment shapes. Integration of
inertial data would also be useful in challenging scenarios.
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