
2.5D Dual Contouring: A Robust Approach to
Creating Building Models from Aerial LiDAR

Point Clouds

Qian-Yi Zhou and Ulrich Neumann�

University of Southern California

Abstract. We present a robust approach to creating 2.5D building mod-
els from aerial LiDAR point clouds. The method is guaranteed to produce
crack-free models composed of complex roofs and vertical walls connect-
ing them. By extending classic dual contouring into a 2.5D method, we
achieve a simultaneous optimization over the three dimensional surfaces
and the two dimensional boundaries of roof layers. Thus, our method can
generate building models with arbitrarily shaped roofs while keeping the
verticality of connecting walls. An adaptive grid is introduced to simplify
model geometry in an accurate manner. Sharp features are detected and
preserved by a novel and efficient algorithm.

Fig. 1. Various kinds of building models are created using 2.5D dual contouring.

1 Introduction

Three dimensional building models are very useful in various applications such
as urban planning, virtual city tourism, surveillance, and computer games. The
advance of acquisition techniques has made aerial LiDAR (light detection and
ranging) data a powerful 3D representation of urban areas, while recent research
work (e.g.,[10, 15]) has introduced a successful pipeline to extract individual
building point clouds from city-scale LiDAR data.

� The authors would like to thank Airborne 1 Corp. for providing data sets. The
authors acknowledge Mark Pritt of Lockheed Martin for his support. The authors
thank Tao Ju, Suya You, and anonymous reviewers for their valuable comments.

2 Qian-Yi Zhou, Ulrich Neumann

Fig. 2. Manually created models [3] show the 2.5D nature of building structures.

The aerial LiDAR point clouds are 2.5D data, i.e., the LiDAR sensor captures
the details of roof surfaces, but collects few points on building walls connecting
roof boundaries. In addition, manually created building models (Figure 2) also
show a 2.5D characteristic. Nearly all of them consist of complex roofs (green
faces) connected by vertical walls (white faces). Thus, we desire a 2.5D modeling
method with the following properties:

– Accuracy: The method should produce simple polygonal models fitting the
input point clouds in a precise manner.

– Robustness: Regardless of the diversity and complexity of building roof
shapes, the method should always generate crack-free models, even with the
existence of undesired elements such as residual sensor noise and small roof
features.

– 2.5D characteristic: The method should create 2.5D polygonal models
composed of detailed roofs and vertical walls connecting roof layers.

Most of the previous research work is based on the detection of some pre-
defined roof patterns, such as planar shapes [8, 10, 11, 15] or a small set of user-
given primitives [5, 12–14]. These methods work well for buildings composed of
pre-defined shapes, but lose accuracy and robustness when dealing with arbi-
trary roof shapes such as those shown in Figure 1. Another way to attack this
problem is with traditional data-driven approaches. Polygonal models are first
generated directly from input data using rasterization or delaunay triangulation,
then simplified with general mesh simplification algorithms. The latter step sig-
nificantly reduces triangle number while preserving a low fitting error. However,
since the general simplification algorithms are usually ‘blind’ to the 2.5D nature
of the problem, they can hardly produce models satisfying our 2.5D requirement.

We propose a novel, data-driven approach to solve this problem, named 2.5D
dual contouring. Like the classic dual contouring [4], we use an adaptive grid as
the supporting data structure, and reconstruct geometry in each grid node by
minimizing the quadratic error functions known as QEFs. Model simplification
is easily achieved by merging grid nodes and combining QEFs.

In order to represent the detailed roof surfaces, our approach works in a 3D
space. However, unlike the classic 3D dual contouring, we use a 2D grid as our
supporting data structure. We generate a hyper-point in each grid cell, which
contains a set of 3D points having the same x-y coordinates, but different z

2.5D Dual Contouring 3

values. They can be regarded as a set of points intersected by a vertical line
and multiple roof layers. Hence, the consistency between boundary footprints of
different roof layers is guaranteed, and vertical walls are produced by connecting
neighboring hyper-points together.

Given that our method is built on some of previous work, we explicitly state
our original contributions as follows:

1. We propose a new robust method to create 2.5D building models from aerial
point clouds. We demonstrate how to simplify geometry in a topology-safe
manner and construct polygons within a 2.5D framework. Our results are
guaranteed to be accurate watertight models, even for buildings with arbi-
trarily shaped roofs.

2. We propose an algorithm to detect sharp roof features by analyzing the QEF
matrices generated in 2.5D dual contouring. The analysis result is then used
to preserve such features in polygon triangulation.

3. Benefiting from a post-refinement step, our algorithm has the ability to pro-
duce building models aligning with principal directions, as defined in [14].

2 Related Work

We review the related work on two aspects: building reconstruction methods and
volumetric modeling approaches.

2.1 Building Reconstruction from Aerial LiDAR

Many research efforts have addressed the complex problem of modeling cities
from aerial LiDAR data. Recent work (e.g., [8, 10, 11, 14, 15]) introduced an au-
tomatic pipeline with the following characteristics: trees and noises are removed
via a classification algorithm, and a segmentation module splits the remaining
points into individual building patches and ground points. The building patches
are then turned into mesh models by a modeling algorithm.

In the last step, these methods first apply a plane fitting algorithm to extract
planar building roofs, then employ different heuristics to guide the modeling pro-
cess. For example, Matei et al.[8] regularize roof outlines by estimating building
orientations. Poullis and You [10] create simple 3D models by simplifying bound-
aries of fitted planes. Verma et al.[11] employ a graph-based method to explore
the topology relationships between planar roof pieces. Zhou and Neumann [14]
learn a set of principal directions to align roof boundaries and this principal
direction learning procedure is further extended to city-scale data sets in [15].

To alleviate the problem that only planar shapes can be handled well, primitive-
based methods are developed to reconstruct complex building roofs. Lafarge et
al.[5] propose a two-stages method to find the optimal combination of parametric
models based on a RJMCMC sampler. You et al.[12] and Zhou and Neumann
[14] show the usage of primitives with the help of user-interaction. Zebedin et
al.[13] detect planes and surfaces of revolution. However, as mentioned previ-
ously, all of these methods are limited by the user-defined primitive libraries,
thus lose accuracy and robustness when dealing with arbitrary roof shapes.

4 Qian-Yi Zhou, Ulrich Neumann

��� ��� ��� ��� ���

Fig. 3. Robust building modeling pipeline: (a) the input point cloud; (b) a 2D grid
with surface Hermite data (gold arrows) and boundary Hermite data (red arrows)
attached; (c) hyper-points (turquoise balls connected by red lines) generated by min-
imizing QEFs; (d) mesh model reconstructed via 2.5D dual contouring; and (e) final
model with boundaries snapped to principal directions.

2.2 Volumetric Modeling Approaches

Volumetric methods [1, 4, 7] have proved to be a robust way of generating crack-
free models: input points are first scan-converted into a regularized grid; then
geometry and topology are created respectively. For example, the dual contouring
method [4] creates one mesh vertex in each minimal grid node by optimizing a
quadratic error function, and constructs polygons during a traversal over the
adaptive grid. Based on this work, Fiocco et al.[2] develop a modeling method
combining aerial and ground-based LiDAR.

Nevertheless, these volumetric approaches all work for regular 2D or 3D grids.
None of them have the same 2.5D characteristic as our approach.

3 Pipeline Overview

Given a building point cloud as input, our modeling process executes four steps
as illustrated in Figure 3:

1. Scan conversion: We embed the point cloud in a uniform 2D grid. Sur-
face Hermite data samples (gold arrows) are generated at grid points and
boundary Hermite data samples (red arrows) are estimated on grid edges
connecting different roof layers (Figure 3(b)). This 2D grid is also regarded
as the finest level of our supporting quadtree.

2. Adaptive creation of geometry: In each quadtree cell, we compute a
hyper-point by minimizing a 2.5D QEF. Geometry simplification is achieved
in an adaptive manner by collapsing subtrees and adding QEFs associated
with leaf cells (Figure 3(c)).

2.5D Dual Contouring 5

3. Polygon generation: We reconstruct a watertight mesh model by connect-
ing hyper-points with surface polygons (turquoise triangles) and boundary
polygons (purple triangles), which form building roofs and vertical walls,
respectively (Figure 3(d)).

4. Principal direction snapping: The roof boundaries are refined to follow
the principal directions defined in [14] (Figure 3(e)).

4 Scan Conversion

The first step of our modeling algorithm converts the input point cloud into a
volumetric form, by sampling Hermite data (in the form of point-normal pairs)
over a 2D supporting grid. With elements being considered as their infinite exten-
sions along the vertical direction, this 2D grid has a 3D volumetric connotation.
E.g., a grid cell represents an infinite three dimensional volume, while a grid
point corresponds to a vertical line containing it.

4.1 Surface Hermite Data

Given a 2.5D point cloud as input, we first segment it into multiple roof layers
using a local distance-based region growing algorithm1, as shown in Figure 4(a).
Ideally, each vertical line passing through a grid point intersects with one and
only one roof layer. The intersection point is taken as a surface Hermite data
sample, and estimated by averaging the heights and normals2 of its k-nearest
input points within the same roof layer, illustrated as points marked with blue
or purple outlines (taking k = 4) in Figure 4(a).

The only difficulty in this process is to robustly detect the right roof layer
crossing the vertical line. Intuitively, we say a roof layer L covers a grid point g
iff each of g’s four neighboring cells contains at least one input point p belonging
to L or a higher cluster L′. E.g., in Figure 4(a), point A is covered by no roof
layers, and thus is assigned as ground; point B is only covered by and assigned
to the dark-grey layer; covered by both the dark-grey layer and the light-grey
layer, point C is assigned to the highest covering layer, i.e., the light-grey layer.

4.2 Boundary Hermite Data

While surface Hermite data captures the surface geometry of building roofs, the
shapes of roof boundaries are represented by the boundary Hermite data.

Considering a grid edge e connecting two grid points with surface Hermite
data samples {s0, s1} on different roof layers s0 ∈ L0, s1 ∈ L1,

3 the vertical

1 The roof layers are always segmented in a local area, as global segmentation may
erase local features such as those shown in Figure 8(c). Specifically, the segmentation
for grid point g is applied to all the input points in g’s four neighboring cells.

2 Point normals are pre-computed using covariance analysis [14].
3 To avoid ambiguity, roof layers are determined again by a local segmentation over
{s0, s1} ∪ P , where P is the input point set within e’s two adjacent cells.

6 Qian-Yi Zhou, Ulrich Neumann

	
����
����������

�������

	
����
�����
���

�������

�������������������������
����������

�������

�������������������������
�����
���

�������

������������������������������
���

� � �

�
�������������������������

� ! �

����
��"��
��

��� ��� ���

Fig. 4. Generating (a) surface Hermite data samples on grid points: the sample is
assigned to the highest roof layer which covers the grid point; (b,c) boundary Hermite
data samples on grid edges: we find the maximum margin line (thin black lines) to
divide the lower surface Hermite data sample from the higher roof layer.

wall connecting L0 and L1 should split their projection images on the x-y plane.
Inspired by the 2D support vector machine algorithm, we find the maximum-
margin line l which separates L0 and L1 on the x-y plane, and estimate the
boundary sample by intersecting line l and edge e.

In practice, with the existence of residual sensor noise, the projections of
different roof layers may overlap on the x-y plane. Since our data is collected
from a top view, we give more saliency to the higher roof layer L1 (assuming
height(L0) < height(L1)), and thus take the maximum-margin line l which
separates {s0} and L1 while maximizing distance(s0, l), shown as the thin black
lines in Figure 4(b,c). Empirically, we find this method more robust than other
methods including that using a maximum-soft-margin line dividing L0 and L1.

5 Adaptive Creation of Geometry

Given a quadtree cell c (not necessarily being a finest-level leaf cell), we denote
the set of surface Hermite data samples on the grid points in c as S, and the
set of boundary Hermite data samples on atomic grid edges in c as B. The roof
layers in c are then determined by segmenting S into k clusters S = S1∪· · ·∪Sk.
Intuitively, if an atomic grid edge in c has no boundary sample attached, it con-
nects two surface samples of the same roof layer. Thus, we use an agglomerative
clustering algorithm via repeatedly combining surface sample sets connected by
edges without boundary samples.

Now our task is to generate k vertices for the k roof layers, denoted as a hyper-
point χ = {x1, . . . , xk}. To maintain the consistency of roof layer boundaries,
we require these k vertices to have the same projection onto the x-y plane, i.e.,
they should have the same x-y coordinates, but different z values. Thus χ can be
expressed as a k+2 dimensional vector χ = (x, y, z1, . . . , zk). We let x0 = (x, y, 0)
for convenience in following discussions.

2.5D Dual Contouring 7

5.1 2.5D QEF

The hyper-point χ is optimized by minimizing a 2.5D QEF defined as the linear
combination of 2D boundary quadratic errors and 3D surface quadratic errors:

E(χ) =
∑

(p,n)∈B

(ωn · (x0 − p))2 +
∑

i=1,...,k

∑
(p,n)∈Si

(n · (xi − p))2 (1)

where ω is a user-given weight balancing between boundary samples and surface
samples. Empirically, a weight between 1 ∼ 4 satisfies most of our experiments.

Due to the horizontality of boundary sample normals, the third coordinates
of p and x0 do not affect the 2D error term. However, we choose to write all these
variables uniformly in 3D, in order to express the energy function in a matrix
product form:

E(χ) = (Aχ− b)T (Aχ− b) (2)

where A is a matrix whose rows come from normals in B,S1, . . . , Sk, with those
in B multiplied by ω. The x-y values of each normal are placed in the first two
columns, while the z values of normals in Si are placed in the (i+2)-th column.
The remaining entries in A are padded with zeros. b is a vector composed of
corresponding inner products n · p with the first |B| entries multiplied by ω.

We employ the QR decomposition proposed in [4] to improve numerical sta-
bility during QEF optimization, i.e.,

(A b) = Q

⎛
⎜⎜⎝

Â b̂
0 r
0 0
.

⎞
⎟⎟⎠ (3)

where Q is an orthogonal matrix and Equation 2 can be rewritten as:

E(χ) = (Aχ− b)TQQT (Aχ− b) = (Âχ− b̂)T (Âχ− b̂) + r2. (4)

Thus, E(χ) is minimized by solving Âχ − b̂ = 0. To handle the possible
singularity of Â, we follow the solutions in previous methods [4, 6] by applying
an SVD decomposition:

Â = UΣV T , (5)

truncating small singular values in Σ with a magnitude of less than 0.1, and
using the pseudo-inverse Σ+ to compute the hyper-point χ as:

χ = χ̄+ V Σ+UT (b̂− Âχ̄) (6)

where χ̄ is a guessed solution whose first two coordinates come from the centroid
of B, and the (i + 2)-th coordinate is the mean height of samples in Si. If B is
empty, the first two coordinates equal to those of the centroid of S.

8 Qian-Yi Zhou, Ulrich Neumann

A

AA

A

Surface polygons

Boundary polygons

Relevant grid points

Relevant grid edges

(a) (b) (c) (d)

Fig. 5. (a,b) Creating surface polygons (colored hollow polygons) and boundary poly-
gons (colored semitransparent polygons) around hyper-point A. Viewing from top, (c)
surface polygons are generated at grid points, while (d) boundary polygons are pro-
duced for grid edges which exhibit a roof layer gap.

5.2 Quadtree Simplification with QEFs

Taking a quadtree with QEF matrices pre-computed for all the finest-level cells,
we simplify the geometry by collapsing leaf cells into parent cells and combining
QEFs in a bottom-up manner. A user-given tolerance δ controls the simplification
level by denying sub-tree collapse when the residual is greater than δ.

Combining four regular 3D QEFs can be simply achieved by merging the
rows of their upper triangular matrices to form a 16 × 4 matrix [4]. We follow
this method to combine our 2.5D QEF matrices, yet with the consideration of
association between matrix columns and roof layers: as roof layers in leaf cells
merge into one roof layer in the parent cell, corresponding matrix columns are
placed in the same column of the combined matrix. Specifically, we redo the roof
layer segmentation in the parent cell before merging matrices. Assuming the i-th
roof layer in a leaf cell belongs to the j-th roof layer in the parent cell, we put
the (i + 2)-th column of the leaf cell matrix into the (j + 2)-th column of the
combined matrix. 0-columns are used to pad the leaf cell matrices where no roof
layers belong to certain roof layers in the parent cell.

Once again, the merged matrix is brought to the upper triangular form via
a QR decomposition. Due to the orthogonality of involved transformation ma-
trices, it represents the 2.5D QEF in the parent cell.

6 Polygon Generation

Given the simplified quadtree with hyper-points estimated in each leaf cell, our
next task is to create polygons connecting these hyper-points into a mesh. In
particular, we generate two kinds of polygons to satisfy our 2.5D characteristic.

1. Surface polygons: At each grid point p, we generate a surface polygon by
connecting vertices in the hyper-points on the same roof layer as p in its
neighboring cells.

2. Boundary polygons: At each minimal quadtree edge e, we create a bound-
ary polygon connecting two hyper-point segments in the adjacent cells.

2.5D Dual Contouring 9

#$#

%$#

����
�����������&�'*+$%#��, , ����
�����������&�*'$'-��, ,

Fig. 6. Triangulation without (left) and with (right) our sharp feature preserving al-
gorithm. The colors of input points represent the squared distances from the mesh.

Figure 5 shows an example of polygon generation around a hyper-point A.
The surface polygons and boundary polygons are highlighted with colored out-
lines and colored semitransparent polygons respectively. To avoid cracks gen-
erated within a hyper-point, we make a boundary polygon sequentially pass
through the vertices in hyper-point segment in height ascending or descending
order. E.g., the dark-blue boundary polygon in Figure 5 goes through all the
three vertices in hyper-point A, from the top vertex to the bottom vertex.

Our method is guaranteed to produce crack-free models, which can be derived
from the fact that except for the border edges created around the entire grid,
the other mesh edges are contained by an even number of polygons. Proof is
straightforward: a non-vertical mesh edge is either contained by two surface
polygons, or by one surface polygon and one boundary polygon. As for the
vertical mesh edges created within a hyper-point, we consider all the boundary
polygons around this hyper-point (e.g., the colored semitransparent polygons
shown in Figure 5(a,b)). They go up and down though this hyper-point and
finally return to the start vertex, forming up a closed edge loop. Thus, each
vertical mesh edge in this hyper-point appears even times.

6.1 Sharp Feature Preserving Triangulation

By minimizing QEFs, 2.5D dual contouring has the ability to produce vertices
lying on sharp features, which are a common pattern in building roofs. However,
we find that a poor triangulation of surface polygons can spoil this advantage,
as shown in Figure 6 left. To solve this problem, we propose an efficient sharp
feature detection algorithm and preserve these features once detected.

In a grid cell c containing only one roof layer, we apply covariance analysis
over the normals of all surface samples, i.e., to get the eigenvalues of matrix:

C =
1

N

∑
i

ni · nT
i , (7)

and use Equation 3 and 5 to simplify it since c has no boundary samples:

C =
1

N
ATA =

1

N
ÂT Â =

1

N
V ΣTΣV T . (8)

Thus, the diagonal of matrix 1
NΣTΣ gives the eigenvalues of C, while the

columns of V are corresponding eigenvectors. As Pauly [9] suggests, the smallest

10 Qian-Yi Zhou, Ulrich Neumann

Fig. 7. Comparison between topology-unsafe simplification (left) and topology-safe
simplification (right). Undesired features can be created by merging leaf cells in a
topology-unsafe manner.

eigenvalue λ0 and the middle eigenvalue λ1 estimate the minimal and maximal
curvatures, as the corresponding eigenvectors v0, v1 point to the curvature di-
rections. Therefore, we find ridges and valleys by detecting vertices with small
λ0 and fairly large λ1, and use v0 as the feature direction. Since the involved
matrices have all been computed in previous steps, the additional overhead of
this algorithm is trivial.

Specifically, for each diagonal e of a surface quad, we calculate:
∑

p∈e and λ0(p)<τ

λ1(p) · |v0(p) · e| (9)

and choose the diagonal e∗ which maximizes this value to split the quad into
two triangles. Here τ is a user given threshold. Our experiments take τ = 0.01.

7 Topology-Safe Simplification

So far the quadtree simplification is completely built on QEFs, and the topology
of output models may change during this process. Undesired features can be
generated as shown in Figure 7 left. To solve this problem, we insert an additional
topology test right before sub-tree collapse happens; and reject collapse if the test
reveals a danger of topology change. Regarding multiple roof layers as multiple
materials, we use the topology test algorithm in [4], with an additional test (step
3) which prevents different roof layers in one leaf cell (top-left cell in Figure 8(a))
from merging into a same roof layer in the coarse cell (Figure 8(b)). This situation
may cause removal of small vertical wall features (e.g., Figure 8(c)).

1. Test whether each leaf cell creates a manifold; if not, stop.
2. Test whether the coarse cell creates a manifold; if not, stop.
3. Test whether any two roof layers in a same leaf cell belong to two different

roof layers in the coarse cell; if not, stop.
4. Test whether the topology of the dual contour is preserved using following

criteria; if not, stop; otherwise, collapse.
(a) Test whether the roof layer on the middle point of each coarse edge

agrees with the roof layer on at least one of the two edge endpoints.
(b) Test whether the roof layer on the middle point of the coarse cell agrees

with the roof layer on at least one of the four cell corners.

2.5D Dual Contouring 11

(a) (b) (c)

Surface samples with
different roof layer
assignments

Boundary samples
exhibiting roof layer
gaps

Surface polygons

Boundary polygons

Fig. 8. An unsafe simplification case denied by the topology safety test step 3. Since
the center grid point has different roof layer assignments in these leaf cells, two different
layers in the top-left leaf cell (a) belong to the same roof layer in the coarse cell (b).
Unsafe merging may erase wall features such as the one shown in (c).

	��������
������
��

Fig. 9. Roof layer boundaries (thick colored lines) are snapped to principal directions.

8 Principal Direction Snapping

Our algorithm is completely data-driven, i.e., no pre-assumptions about the
roof shapes have been made. Thus our algorithm can handle complex roofs in a
robust manner. On the other hand, in some cases, prior knowledge of the urban
area is given and it is a desire to have building models concurring with such
knowledge. In this section, we show a post-processing refinement to our results
using the prior knowledge of principal directions, which are defined as the roof
edge direction preference in a local urban area [14].

The idea is straightforward: once the boundaries of individual roof layers are
extracted, we snap them to the principal directions as much as possible without
exceeding a small error tolerance. In order to maintain the consistency between
boundaries of different layers, the boundaries are handled one by one in height-
descending order. I.e., when a roof layer boundary has been processed, the x-y
coordinates of the touched hyper-points are fixed, which are then considered as
constraints during the subsequent processing of lower roof layers. Figure 9 shows
clean and simple roof boundaries generated by the principal direction refinement.

9 Experiment Results

Figure 10 shows an urban area of Los Angeles reconstructed from 26M LiDAR
points with 7 samples/sq.m. resolution. We employ the reconstruction pipeline

12 Qian-Yi Zhou, Ulrich Neumann

Fig. 10. Building reconstruction for a 2KM-by-2.5KM urban area of Los Angeles.

proposed in [15] to remove irrelevant parts such as noises, trees, vehicles and
even ground. We then test our 2.5D dual contouring on point clouds of individual
buildings to create 2.5D models with complex roofs. Our algorithm successfully
creates 1879 building models consisting of 857K triangles within 6 minutes on a
consumer-level laptop (Intel Core 2 1.8GHz CPU with 2GB memory).

To further demonstrate the ability of handling various kinds of building mod-
els, we test our method on a set of buildings from Atlanta, as illustrated in Figure
1. Figure 11 shows a comparison between our method and previous methods. In
particular, we compare the average squared distance from input point sets to
the generated models, and the ratio of points with squared distances greater
than 1sq.m. In Figure 11, point colors denote the squared distances, and the
colored bars show the percentage of points at different squared distance levels.
As the quantitative results in Table 1 illustrate, our method (first column) is the
most accurate algorithm to produce 2.5D models. Plane-based approaches such
as [14] (second column) are unable to handle non-flat roofs (a,d) and small roof
features (b,e). Cracks often exist when fitting is unsuccessful (c,d). A general
mesh simplification over the DEM (third column) is competitive in the sense of
fitting quality. However, it cannot produce 2.5D models composed of roofs and
vertical walls. In addition, the fitting quality on roof boundaries is unsatisfac-
tory (f,g,h). The last column demonstrates point clouds aligning with manually
created models. Designed without knowledge from real-world data, they often
lack of accuracy even after registration to the input points.

2.5D Dual Contouring 13

#$#

�.�����
/������

%$#

�

�

�

�

� �

� 	

�

�

�

�
	

Fig. 11. Building models created using different approaches (from left to right): 2.5D
dual contouring, plane-based method proposed in [14], general mesh simplification over
a rasterized DEM, and manual creation. Color bars under the models show the ratio
of points at different squared distance level.

Models in Figure 11
2.5D dual
contouring

Plane-based
method [14]

DEM simpli-
fication

Manual
creation [3]

First row

(4679 points)

Triangle number 214 76 198 78

Average distance2 0.016 0.599 0.061 0.058

Outlier ratio 0.06% 12.37% 0.53% 0.83%

Second row

(684907 points)

Triangle number 8009 6262 8000 1227

Average distance2 0.037 0.465 0.035 7.780

Outlier ratio 0.44% 7.93% 0.87% 70.38%

Third row

(198551 points)

Triangle number 12688 1619 12999 1558

Average distance2 0.203 1.610 0.264 16.220

Outlier ratio 2.03% 21.15% 3.08% 68.28%

Table 1. Quantitative evaluation of experiments shown in Figure 11.

We finally demonstrate the influence of grid configuration in Figure 12. As an
adaptive approach, our method is insensitive to the grid size (top row). In addi-
tion, 2.5D dual contouring has the ability to place vertices at optimal positions,
thus grid orientation affects the results insignificantly (bottom row).

10 Conclusion

We present a robust method to automatically creating building models from
aerial LiDAR point clouds. Our results are 2.5D models composed of complex

14 Qian-Yi Zhou, Ulrich Neumann

��������� ����	���� ����	�
��

0��$�1�&�2*+ ��� �"� &�#$##- 0��$�1�&�'22 ��� �"� &�#$#%# 0��$�1�&�+23 ��� �"� &�#$#%'

0��$�1�&�'22 ��� �"� &�#$#%# 0��$�1�&�242 ��� �"� &�#$#%' 0��$�1�&�-*4 ��� �"� &�#$#,3

� ��� � � ���� � � ��
�

/������������
��������
�5
!������6�5� ����	����
!����
������
�5� � ��� �

0��$�1�&�'22 ��� �"� &�#$#%#

Fig. 12. Models of similar quality are generated with the same point cloud embedded
into grids of different sizes or different orientations.

building roofs connected by vertical walls. By extending dual contouring into a
2.5D method, our algorithm optimizes the surface geometry and the boundaries
of roof layers simultaneously. The output models are guaranteed to be crack-free
meshes with small fitting error, faithfully preserving sharp features.

References

1. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: ACM SIGGRAPH (1996)

2. Fiocco, M., Boström, G., Gonçalves, J.G.M., Sequeira, V.: Multisensor fusion for
volumetric reconstruction of large outdoor areas. 3DIM (2005)

3. Google: Google 3d warehouse. http://sketchup.google.com/3dwarehouse/
4. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring on hermite data. In:

ACM SIGGRAPH (2002)
5. Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Building recon-

struction from a single dem. In: CVPR (2008)
6. Lindstrom, P.: Out-of-core simplification of large polygonal models. In: ACM SIG-

GRAPH (2000)
7. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction

algorithm. In: ACM SIGGRAPH (1987)
8. Matei, B., Sawhney, H., Samarasekera, S., Kim, J., Kumar, R.: Building segmen-

tation for densely built urban regions using aerial lidar data. In: CVPR (2008)
9. Pauly, M.: Point primitives for interactive modeling and processing of 3d geometry.

PhD thesis, ETH Zurich (2003)
10. Poullis, C., You, S.: Automatic reconstruction of cities from remote sensor data.

In: CVPR (2009)
11. Verma, V., Kumar, R., Hsu, S.: 3d building detection and modeling from aerial

lidar data. In: CVPR (2006)
12. You, S., Hu, J., Neumann, U., Fox, P.: Urban site modeling from lidar. In: Pro-

ceedings, Part III. ICCSA (2003)
13. Zebedin, L., Bauer, J., Karner, K., Bischof, H.: Fusion of feature- and area-based

information for urban buildings modeling from aerial imagery. In: ECCV (2008)
14. Zhou, Q.Y., Neumann, U.: Fast and extensible building modeling from airborne

lidar data. In: ACM GIS (2008)
15. Zhou, Q.Y., Neumann, U.: A streaming framework for seamless building recon-

struction from large-scale aerial lidar data. In: CVPR (2009)

