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Abstract. We present an algorithm for fast global registration of partially over-
lapping 3D surfaces. The algorithm operates on candidate matches that cover the
surfaces. A single objective is optimized to align the surfaces and disable false
matches. The objective is defined densely over the surfaces and the optimiza-
tion achieves tight alignment with no initialization. No correspondence updates
or closest-point queries are performed in the inner loop. An extension of the al-
gorithm can perform joint global registration of many partially overlapping sur-
faces. Extensive experiments demonstrate that the presented approach matches
or exceeds the accuracy of state-of-the-art global registration pipelines, while be-
ing at least an order of magnitude faster. Remarkably, the presented approach is
also faster than local refinement algorithms such as ICP. It provides the accu-
racy achieved by well-initialized local refinement algorithms, without requiring
an initialization and at lower computational cost.

1 Introduction

Registration of three-dimensional surfaces is a central problem in computer vision,
computer graphics, and robotics. The problem is particularly challenging when the sur-
faces only partially overlap and no initial alignment is given. This difficult form of
the problem is encountered in scene reconstruction [7, 39], 3D object retrieval [15, 29],
camera relocalization [13], and other applications.

In order to deal with noisy data and partial overlap, practical registration pipelines
employ iterative model fitting frameworks such as RANSAC [31]. Each iteration sam-
ples a set of candidate correspondences, produces an alignment based on these corre-
spondences, and evaluates this alignment. If a satisfactory alignment is found, it is re-
fined by a local registration algorithm such as ICP [30]. The combination of sampling-
based coarse alignment and iterative local refinement is common in practice and is
designed to produce a tight registration even with challenging input [7, 19, 39].

While such registration pipelines are common, they have significant drawbacks.
Both the model fitting and the local refinement stages are iterative and perform compu-
tationally expensive nearest-neighbor queries in their inner loops. Much of the com-
putational effort is expended on testing candidate alignments that are subsequently
discarded. And the inelegant decomposition into a global alignment stage and a lo-
cal refinement stage is itself a consequence of the low precision of global alignment
frameworks.

In this paper, we present a fast global registration algorithm that does not involve
iterative sampling, model fitting, or local refinement. The algorithm does not require
initialization and can align noisy partially overlapping surfaces. It optimizes a robust
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objective defined densely over the surfaces. Due to this dense coverage, the algorithm
directly produces an alignment that is as precise as that computed by well-initialized
local refinement algorithms.

This direct approach has substantial benefits. It accomplishes in a single stage what
is commonly done in two. This single stage optimizes a clear global objective. The
optimization does not require closest-point queries in the inner loop. As a result, the
presented algorithm is more than an order of magnitude faster than existing global reg-
istration pipelines, while matching or exceeding their accuracy.

Furthermore, we show that the presented algorithm can be extended to direct global
alignment of multiple partially overlapping surfaces. Such joint alignment is often nec-
essary in applications such as scene reconstruction [7, 39]. Existing approaches to this
problem exhaustively produce candidate alignments between pairs of surfaces and then
compute a globally consistent set of poses based on these intermediate pairwise align-
ments. In contrast, we show that a joint alignment can be produced directly by a single
optimization of a global objective.

We evaluate the presented global registration algorithm on multiple datasets. Ex-
tensive experiments demonsrate that the presented approach matches or exceeds the
accuracy of state-of-the-art global registration pipelines, while being at least an order
of magnitude faster. Remarkably, the presented approach is also faster than local refine-
ment algorithms such as ICP, since it does not need to recompute correspondences. It
provides the accuracy achieved by well-initialized local refinement algorithms, without
requiring an initialization and at lower computational cost.

2 Related Work

Geometric registration has been extensively studied [15, 28, 36, 38]. The typical work-
flow consists of two stages: global alignment, which computes an initial estimate of
the rigid motion between two surfaces, followed by local refinement, which refines this
initial estimate to obtain a tight registration [7, 12, 19,25,27,37,39]. We review each
of these stages in turn.

Most global alignment methods operate on candidate correspondences. Some pipelines
use point-to-point matches based on local geometric descriptors [16, 40], others define
correspondences on pairs or tuples of points [1, 8,26,29]. Once candidate correspon-
dences are collected, alignment is estimated iteratively from sparse subsets of corre-
spondences and then validated on the entire surface. This iterative process is typically
based on variants of RANSAC [1, 19, 26,29, 34] or pose clustering [8, 26,35]. When
the data is noisy and the surfaces only partially overlap, existing pipelines often require
many iterations to sample a good correspondence set and find a reasonable alignment.

Another approach to global registration is based on the branch-and-bound frame-
work [10, 12, 18,23, 42]. These algorithms systematically explore the pose space in
search of the optimal solution. The branch-and-bound framework is appealing due to
its theoretical optimality guarantees. However, the systematic search can be extremely
time-consuming. In practice, the sampling-based frameworks described earlier outper-
form the branch-and-bound approaches when large datasets are involved.
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Local refinement algorithms begin with a rough initial alignment and produce a
tight registration based on dense correspondences. Most such methods are based on the
iterative closest point (ICP) algorithm and its variants [30, 33]. In its basic form, ICP be-
gins with an initial alignment and alternates between establishing correspondences via
closest-point lookups and recomputing the alignment based on the current set of corre-
spondences. ICP can produce an accurate result when initialized near the optimal pose,
but is unreliable without such initialization. A long line of work has explored various
approaches to increasing the robustness of ICP. Fitzgibbon [11] introduced nonlinear
least-squares optimization to develop a robust error function that increases the radius of
convergence. Bouaziz et al. [5] introduced sparsity inducing norms to deal with outliers
and incomplete data. Other works explored the utility of relaxed assignments [14,24,
32], distance field representations [6], and mixture models [21,41] for increasing the
robustness of local registration. Nevertheless, these approaches still rely on a satisfac-
tory initialization. Our work demonstrates that the accuracy achieved by well-initialized
local refinement algorithms can be achieved reliably without an initialization, at a com-
putational cost that is more than an order of magnitude lower than the coarse global
alignment algorithms described earlier.

Joint global registration of multiple partially overlapping surfaces has also been
considered [7, 20, 39]. However, existing approaches to joint global registration first
align many pairs of surfaces and then optimize the joint global alignment based on these
intermediate pairwise results. This indirect approach incurs significant computational
overhead. In contrast, we show that joint global alignment of many partially overlapping
surfaces can be optimized for directly.

3 Pairwise Global Registration

3.1 Objective

Consider two point sets P and Q. Our task is to find a rigid transformation T that aligns
Q to P. Our approach optimizes a robust objective on correspondences between P and
Q. These correspondences are established by rapid feature matching that is performed
before the objective is optimized. The correspondences are not recomputed during the
optimization. For this reason, it is critical that the optimization be able to deal with very
noisy correspondence sets. This is illustrated in Figure 1.

Let £ = {(p,q)} be the set of correspondences collected by matching points from
P and Q as described in Section 3.3. Our objective is to optimize the pose T such that
distances between corresponding points are minimized, while spurious correspondences
from K are seamlessly disabled. The objective has the following form:

E(T)= > p(lp—Ta|). 8

(p,a)eX

Here p(-) is a robust penalty. The use of an appropriate robust penalty function is crit-
ical, because many of the terms in objective 1 are contributed by spurious constraints.
To achieve high computational efficiency, we do not want to sample, validate, prune,
or recompute correspondences during the optimization. A well-chosen estimator p will
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(a) Shape (b) A pair of surfaces with correspondences

Fig. 1. An illustration with 2D point sets. (a) A latent shape. (b) Two partially overlapping sur-

faces and a set of point-to-point correspondences. The blue correspondences are genuine, the red

correspondences are erroneous. For fast and accurate registration, the erroneous correspondences

must be disabled without sampling, validation, pruning, or correspondence recomputation.

perform the validation and pruning automatically without imposing additional compu-
tational costs. We use a scaled Geman-McClure estimator:
pa?
pla) = s @)
Figure 2(a) shows the Geman-McClure estimator for different values of pi. As can be
seen in the figure, small residuals are penalized in the least-squares sense, while the sub-
linear growth and rapid flattening out of the estimator neutralize outliers. The parameter
1 controls the range within which residuals have a significant effect on the objective;
its setting will be discussed in Section 3.2.
Objective 1 is difficult to optimize directly. We use the Black-Rangarajan duality
between robust estimation and line processes [3]. Specifically, let L = {l, 4} be a line

process over the correspondences. We optimize the following joint objective over T and
L:

E(T,L) = Z lp.qllp — Tq|* + Z V(lp,q)- 3

(p,9) ek (p,q)eK

Here ¥(lp ) is a prior, set to

‘I’(lnq) = H(\/ lpa — 1)2- 4)

For E(T,L) to be minimized, the partial derivative with respect to each [ q must
vanish:

OF Vipag—1
g = P = Tdl + == =0. 5)
pP.a pP.a
Solving for I, 4 yields
2
lpg = (“2> . ©6)
e+ [lp — Tql|

Substituting I, o into E(T,L), objective 3 becomes objective 1. Thus optimizing ob-
jective 3 yields a solution T that is also optimal for the original objective 1.
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(a) Geman-McClure penalty (b) Objective function

Fig. 2. Illustration of graduated non-convexity. As p decreases, the objective function for the
matching problem in Figure 1 becomes sharper and the registration more precise.

3.2 Optimization

The main benefit of the optimization objective defined in equation 3 is that the optimiza-
tion can be performed extremely efficiently by alternating between optimizing T and
L. The optimization performs block coordinate descent by fixing I. when optimizing
T and vice versa. Both types of steps optimize the same global objective (equation 3).
Thus the alternating algorithm is guaranteed to converge.

When L is fixed, objective 3 turns into a weighted sum of L? penalties on distances
between point-to-point correspondences. This objective over T can be solved efficiently
in closed form [9]. However, such closed-form solution does not extend to joint regis-
tration of multiple surfaces, which we are interested in and will extend the presented
approach to in Section 4. We therefore present a more flexible approach. We linearize T
locally as a 6-vector £ = (w,t) = («, 5,7, a, b, ¢) that collates a rotational component
w and a translation t. T is approximated by a linear function of ¢:

1 —v B a
- Y l—Oéb k
T~ B a 1c T D
0 0 01

Here T* is the transformation estimated in the last iteration. Equation 3 becomes a least-
squares objective on £. Using the Gauss-Newton method, £ is computed by solving a
linear system:

JJe=-J]r, (8)

where r is the residual vector and J,. is its Jacobian. T is updated by applying & to T*
using equation 7, then mapped back into the S E(3) group.

When T is fixed, the objective in equation 3 has a closed-form solution. It is mini-
mized when [, 4 satisfies equation 6.

Graduated non-convexity. Objective 3 is non-convex and its shape is controlled by
the parameter p of the penalty function (equation 2). To set p and alleviate the effect
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of local minima we employ graduated non-convexity [4,2]. From the standpoint of
equation 3, p balances the strength of the prior term and the alignment term. Large p
makes the objective function smoother and allows many correspondences to participate
in the optimization even when they are not fit tightly by the transformation T. The effect
of varying p is illustrated in Figure 2. Our optimization begins with a very large value
i = D?, where D is the diameter of the largest surface. The parameter p is decreased
during the optimization until it reaches the value y = 2, where 4 is a distance threshold
for genuine correspondences.

3.3 Correspondences

To generate the initial correspondence set K, we use the Fast Point Feature Histogram
(FPFH) feature [34]. We have chosen this feature because it can be computed in a
fraction of a millisecond and provides good matching accuracy across a broad range of
datasets [16]. Let F(P) = {F(p) : p € P}, where F(p) is the FPFH feature computed
for point p. Define F(Q) = {F(q) : q € Q} analogously.

For each p € P, we find the nearest neighbor of F(p) among F(Q), and for each
q € Q we find the nearest neighbor of F(q) among F(P). Let K be the set that collects
all these correspondences. This set could be used directly as the input to our approach.
However, in practice /C; has a very high fraction of outliers. We use two tests to improve
the inlier ratio of the correspondence set used by the algorithm.

- Reciprocity test. A correspondence pair (p, q) is selected from K; if and only if
F(p) is the nearest neighbor of F(q) among F(P) and F(q) is the nearest neighbor
of F(p) among F(Q). The resulting correspondence set is denoted by Kjj.

— Tuple test. We randomly pick 3 correspondence pairs (p1,q1), (P2, 92), (Ps,qs3)
from Ky and check if the tuples (p1,p2, p3) and (q1,d2,qs3) are compatible.
Specifically, we test if the following condition is met:

Ipi — pjl|

Vi#£j, 1<
la; —qj

<1/, )
where 7 = 0.9. Intuitively, this test verifies that the correspondences are compati-
ble. Correspondences from tuples that pass the test are collected in a set ;7. This
is the set used by the algorithm: IC = KCyy;.

Algorithm 1 summarizes the pairwise registration algorithm used in all subsequent ex-
periments.

4 Multi-Way Registration

Many applications require aligning multiple surfaces to obtain a model of a large scene
or object. To solve this multi-way registration problem, existing approaches first com-
pute pairwise alignments between pairs of surfaces and then attempt to synchronize
these alignments to obtain a global registration [7, 20, 39]. This has two significant dis-
advantages. First, the pairwise alignment stage is computationally wasteful because it
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Algorithm 1: Fast pairwise registration

input : A pair of surfaces (P, Q)
output: Transformation T that aligns Q to P

Compute normals {np} and {nq};

Compute FPFH features F(P) and F(Q);

Build K; by computing nearest neighbors between F(P) and F(Q);
Apply reciprocity test on Iy to get ICrr;

Apply tuple test on [y to get Krrrs;

T+ 1Ly« D?,

while not converged or 1 > §° do
Jr < 0,r < 0;
for (p,q) € K111 do
Compute /(5 ) using equation 6;
Update J, and r of objective 3;

Solve equation 8 and update T';
Every four iterations, p < p/2;

Verify whether T aligns Q to P;

is not apparent in advance which pairs will be useful. Second, pairwise registration can
yield a suboptimal alignment due to local minima that could be disambiguated by a
global approach that considers all surfaces jointly.

We develop an alternative approach: to directly align all surfaces based on raw dense
point correspondences. Instead of optimizing separate pairwise alignments and then
synchronizing the results, we can directly optimize a global registration objective over
all surfaces.

4.1 Objective

Given a set of surfaces {P;}, our task is to estimate a set of poses T = {T; } that aligns
the surfaces in a global coordinate frame. We begin by constructing a set of candidate
correspondences /C;; for each pair of surfaces (P;, Q;),? < j. Objective 1 is extended
to the multi-way setting as follows:

EM=AY > ITp-Tidl*+> >  pITip - Tyql). (10)

it (p,a)ek; 1<j (p,a)€K;;

This formulation incorporates initial odometry transformations {T;} between consec-
utive surfaces, which are commonly available in surface reconstruction. The set /C; col-
lects correspondences between surfaces P; and P;,; under the odometry alignment.
When available, the odometry terms are penalized directly with the L? norm and serve
as a backbone that stabilizes the optimization.
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Define a line process I = {I,, q }. The objective can now be reformulated as follows:

E(T,L) =AY > |Tip- Tinql?

i (p,q)eK;
+3( Y balTe-TalP+ > Wlpq)  AD
i<j  (p,a)EK:; (p,q)EK;

The prior term ¥ (I, o) is defined as in equation 4.

4.2 Optimization

We again use alternating optimization to solve the minimization problem. In each iter-
ation, E(T, L) is first minimized with respect to the line process variables L. This has
a closed-form solution:

2
I
I, :( ) . (12)
PO\ + ITip — Tyq?

Next, E(T, L) is minimized with respect to all poses T. Let T¥ denote the i-th transfor-
mation estimated in the previous iteration. T'; can be locally linearized with a 6-vector
i = (wis t5) = (i, Bi, Vi, @iy by ¢4):

1 —v B ay
o o 1 —ai by k
T~ | e T (13)
0O 0 0 1

Let E be a 6|T|-vector that collates {&; }. E(T, L) becomes a least-squares objective on
=. It is minimized by solving the linear system

JJE=-Jr (14)

and updating T; accordingly. Here J, and r are the Jacobian matrix and the residual
vector, respectively.

Note that the correspondences are never updated. Each iteration performs only two
steps: evaluate a line process variable for each point correspondence, then build and
solve a linear system with 6|T| variables. Both steps are very efficient.

5 Results

5.1 Pairwise registration

We evaluate the presented pairwise registration algorithm on synthetic range data, the
UWA benchmark [27], and the global registration benchmark of Choi et al. [7]. We com-
pare our algorithm with a number of prior global registration methods. GoICP is the
algorithm of Yang et al. [42]. GoICP-Trimming is its trimming variant that supports



Fast Global Registration 9

partial overlap. We use a 10% trimming percentage and use only 1,000 data points, as
suggested by Yang et al. [42]. Without downsampling, GoICP and GoICP-Trimming
take hours to run on our point clouds. Super4PCS is the algorithm of Mellado et
al. [26]. OpencCV is a recent OpenCV implementation of the surface registration algo-
rithm of Drost et al. [8]. PCL is a Point Cloud Library implementation of the algorithm
of Rusu et al. [34, 19]. CZK is the variant of Rusu’s algorithm used by Choi et al. [7].

We also conduct controlled comparisons with local registration algorithms. PCL
ICP is a Point Cloud Library implementation of the ICP algorithm [19]. Sparse ICP
is the algorithm of Bouaziz et al. [S]. We tested these algorithms with both point-to-
point and point-to-plane distance measures [33].

All execution times are measured using a single thread on an Intel Core 17-5960X
CPU clocked at 3.00GHz.

Synthetic range data. We begin by performing a series of controlled experiments
on synthetic data. The availability of precise ground truth enables a detailed evalua-
tion. To conduct controlled experiments, we used three well-known models from the
AIM @SHAPE repository (Bimba, Dancing Children, and Chinese Dragon), the Berke-
ley Angel dataset [22], and the Stanford Bunny. For each model, we synthesized five
pairs of partially overlapping range images and then corrupted these range images with
3D Gaussian noise. We used three noise levels, defined by setting the standard deviation
of the Gaussian distribution to ¢ = 0 (no noise), 0 = 0.0025, and o = 0.005. The unit
of o is the diameter of the surface. For each noise level, there are 25 partially overlap-
ping global registration tests in total. The number of points in each range image varies
between 8,868 and 19,749. The overlap ratio varies between 47% and 90%.
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Fig. 3. Controlled experiments on synthetic data. a-recall is the fraction of tests for which a given
method achieves an RMSE < «. Higher is better. The RMSE unit is the diameter of the surface.
Our algorithm is more robust to noise and is more accurate than prior approaches, while being
more than an order of magnitude faster.

Figure 3 shows the accuracy achieved by the different global registration algorithms
on the 25 tests at each noise level. For each algorithm and each RMSE level «, the fig-
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Table 1. Average and maximal RMSE achieved by global registration algorithms on synthetic
range images with noise level 0. Maximal RMSE is the maxumum among the 25 RMSE values
obtained for individual pairwise registration tests. Our approach outperforms other methods by
a large margin when noise is present. Specifically, for ¢ = 0.005, the average RMSE of our
approach is more than 2 times lower than the lowest average RMSE of any prior approach, and
the maximal RMSE of our approach is 5.6 times lower.

o=0 o = 0.0025 o = 0.005

Average Maximal Average Maximal Average Maximal
RMSE RMSE RMSE RMSE RMSE RMSE
GoICP [42] 0.029 0.130 0.032 0.133 0.037 0.127
GoICP-Trimming [42] 0.035 0.473 0.039 0.475 0.044 0.478
Super 4PCS [26] 0.012 0.019 0.014 0.029 0.017 0.095
OpenCV [8] 0.009 0.013 0.018 0.212 0.032 0.242
PCL [34,19] 0.003 0.005 0.009 0.061 0.111 0.414
CZK [7] 0.003 0.005 0.008 0.022 0.035 0.274
Our approach 0.003 0.005 0.006 0.011 0.008 0.017

ure plots the a-recall, defined as the fraction of tests for which the method achieved
an RMSE < a. (Higher is better.) The RMSE is computed on the distances between
ground-truth correspondences after alignment. Table 1 summarizes the average and
maximal RMSE for each method. (Lower is better.) For synthetic data with no noise, our
method, PCL, and CZK produce tight alignment in 100% of the tests. (RMSE < 0.005.)
The accuracy of OpenCV and Super4PCS is worse by a multiplicative factor of at
least 3, presumably due to their reliance on matching tuples of points rather than op-
timizing for fully dense surface registration. GoICP-Trimming produces accurate
alignment in many cases but suffers from poor accuracy on others, presumably because
its computational costs necessitate operation on downsampled point clouds.

On noisy data, our method is much more robust and accurate than others. For
o = 0.005, the average RMSE of our approach is more than 2 times smaller than the
lowest average RMSE of any prior approach, and the maximal RMSE of our approach
is 5.6 times smaller than the lowest maximal RMSE among prior approaches. This is
presumably because our approach optimizes over dense correspondences rather than
matching point tuples. A qualitative comparison with GoICP-Trimming and PCL is
provided in Figure 4.

Table 2. Running times of global registration methods, measured in seconds. GoICP and its trim-
ming variant operate on point clouds downsampled to 1,000. All other methods operate on full-
resolution point clouds. Our algorithm is 50 times faster than the fastest prior global registration
method.

GolCP-

Average #0fl | 5 10p (42| Trimming |OpenCV (81| 5P “PCS{per (34,191 czK [7] Our

points [42] [26] approach
Bimba 9416 193 194 1.0 3114 182 23 0.13
Children | 11,148 21.0 192 1363 2382 i3 66 0.20
Dragon 11,232 941 384 577 4837 36 19 0.23
Angel 12,072 21.0 204 30.9 1715 87 113 0.26
Bunny 13,357 747 724 23 2838 356 2.7 0.28

[ Average | 11445 || 460 | 340 | 656 | 2077 | 192 [ 11 [ 022 |
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(a) Input range scans (b) GoICP result (c) PCL result (d) Our result

Fig. 4. Visual comparison with GoICP-Trimming and PCL. Our method operates on dense point
clouds and produces a tight alignment with RMSE 0.004 on clean data (top row) and RMSE
0.007 on noisy data (bottom row, ¢ = 0.005). In contrast, the prior approaches break down in
the presence of noise: RMSE 0.129 for GoICP-Trimming and 0.326 for PCL in the bottom row.
Error magnitude is coded by color, with black indicating error above 0.05.

The major benefit of our approach is that it is faster by more than an order of magni-
tude than prior approaches. Table 2 shows the average computation time of each global
registration method on each object. Our method improves registration speed by a factor
of 50 relative to the fastest prior global registration algorithm (CZK). While previous
methods require tens of seconds, our method takes 0.2 seconds on average. This is be-
cause our method avoids expensive nearest-neighbor lookups in the optimization loop.

We further analyze the computational

requirements of our approach by varying [ Normal estimation
. . . [ Feature extraction

the size (i.e., the point count) of the syn- [ Feature matching
. . . [ Optimization

thesized range images and measuring the I\ zlication

Time (ms)

execution time of individual components
of our algorithm. The results are shown
on the right. The majority of the time is .
spent on computing the FPFH features 10000 15000 20000 25000

and building the input correspondences. Totalnumoer of points

These operations are performed only once, before the optimization, and the correspon-
dences are never updated. The optimization itself is extremely fast. Its execution time
is below 30 milliseconds even for point clouds with more than 20,000 points. In ad-
dition, our method performs validation only once, after optimization has converged.
This one-time validation consumes on average 3.3% of our computation time. In con-
trast, sampling-based methods such as PCL perform validation thousands of times in
the RANSAC loop.
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Fig. 5. Controlled comparison with local methods. Local registration algorithms are initialized
with a transformation generated by adding a perturbation in rotation (left) or translation (right)
to the ground-truth alignment. The plots show the mean (bold curve) and standard deviation
(shaded region) of the RMSE of each method. Lower is better. Our algorithm matches the accu-
racy achieved by the local algorithms when they are initialized near the ground-truth pose, but
does not require an initialization.

We also compare our global registration algorithm with local refinement methods
such as ICP and its variants. To perform a controlled evaluation, we varied the accuracy
of the initial transformation provided to the local methods. The results are shown in
Figure 5. We performed two sets of experiments. In one, the local algorithms were ini-
tialized with the ground-truth translation and varying degrees of rotation. In the other,
the local algorithms were initialized with the ground-truth rotation and varying degrees
of translation. As shown in Figure 5, our algorithm matches the accuracy of the lo-
cal refinment methods in the idealized case when these methods are initialized with
the ground-truth transformation. However, the accuracy of the local methods degrades
when the initialization deviates sufficiently from the ground-truth pose: 5 degrees in
rotation or 5-10% of the point cloud diameter in translation. In contrast, our algorithm
does not use an initialization and yields the same accuracy in all conditions.

We further compare the computational costs of our algorithm and the local refine-
ment methods. The results are shown in Table 3. Remarkably, our global registration

Table 3. Timing comparison with local algorithms, measured in seconds. Our global algorithm is
2.8 times faster than a state-of-the-art implementation of ICP.

Average #of || PCLICP PCL ICP Sparse ICP - Sparse ICP
points point-to-point | point-to-plane point-to-point | point-to-plane Our approach
(5] [5]
Bimba 9,416 0.73 0.31 3.1 11.8 0.13
Children 11,148 0.75 0.46 3.9 15.0 0.20
Dragon 11,232 0.99 0.47 3.6 13.8 0.23
Angel 12,072 0.81 1.01 49 18.5 0.26
Bunny 13,357 2.10 1.70 9.2 10.3 0.28

[ Average | 11445 [ 108 [ 079 | 49 [ 139 [ 022 |
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algorithm is 2.8 times faster than a state-of-the-art implementation of ICP. The key
reason is that our algorithm does not need to recompute correspondences.

UWA benchmark. Next, we evaluate our method on the UWA dataset [27]. This dataset
has 50 scenes. Each scene has multiple objects that can be aligned to it. In total, the
dataset contains 188 pairwise registration tests. Figure 6(a) shows a scene with objects
aligned to it by our approach. This dataset is challenging due to clutter, occlusion, and
low overlap. The lowest overlap ratio in the dataset is only 21%. As shown in Fig-
ure 6(b), many prior global registration algorithms perform poorly on this dataset. Our
algorithm achieves a 0.05-recall of 84%, comparable with PCL and CZK (82% and
78%, respectively). OpenCV achieves 52% and the other algorithms are all below 7%.

o
®

o
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5 GoICP-Trimming
04 // Super4PCS 7
OpenCV
PCL
02 CzZK
L Ours
0 . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE o
(b)

Fig. 6. Global registration results on the UWA benchmark [27]. (a) Our result on one of the 188
tests. The scene is colored white and objects aligned to the scene have distinct colors. (b) a-recall
plot comparing our method and prior global registration algorithms. (Higher is better.)

Table 4 compares the speed of our approach with the other global registration meth-
ods on the UWA benchmark. Our approach is an order of magnitude faster than the
fastest prior methods.

Table 4. Average running times of global registration methods on the 188 tests from the UWA
dataset, measured in seconds.

GolCP- Super 4PCS
GolICP [42] Trimming | OpenCV [8] P[26] PCL [34,19] CZK [7] Our approach
[42]
Average time 18.7 18.6 17.6 774 8.2 8.7 0.5

Scene benchmark. We now evaluate on the scene benchmark provided by Choi et
al. [7]. This benchmark has 4 datasets. Each dataset consists of 47 to 57 fragments of
a scene. These fragments contain high-frequency noise and low-frequency distortion
that simulate scans created by consumer depth cameras. Global pairwise registration is
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Table 5. Evaluation on the scene benchmark of Choi et al. [7]. Our approach has the highest
precision and the second highest recall, while being at least an order of magnitude faster.

OpenCV [8] Super 4PCS [26] PCL [34, 19] CZK [7] Our approach
Recall (%) 53 17.8 449 59.2 51.1
Precision (%) 1.6 10.4 14.0 19.6 23.2
Avg. Time (sec) 10 62 3 8 0.2

performed on every pair of fragments from a given scene. Table 5 compares recall and
precision (as defined by Choi et al.), and average running times.

5.2 Multi-way registration

We evaluate the multi-way extension of our algorithm on the Augmented ICL-NUIM
dataset [7, 17]. The dataset contains four sequences, each of which consists of 47 to
57 scene fragments. We apply the multi-way registration algorithm presented in Sec-
tion 4 to these fragments. (The same parameter A = 2 was used for all experiments.)
Our method produces a global alignment of all fragments. We integrate these aligned
fragments and report the mean distance of the reconstructed surface to the ground-truth
model. Table 6 reports the resulting accuracy and running time. The reconstruction ac-
curacy yielded by our direct multi-way registration algorithm matches the accuracy of
the registration approach of Choi et al. [7]. However, our algorithm solves for the joint
global alignment directly, without exhaustive intermediate pairwise alignments. It is
therefore 60 times faster than the approach of Choi et al.

Mean error (meters) Time (seconds)
Choi et al. [7] Ours Choi et al. [7] Ours
Living room 1 0.04 0.05 8,940 131
Living room 2 0.07 0.06 3,360 81
Office 1 0.03 0.03 4,500 69
Office 2 0.04 0.05 4,080 48
[ Average I 0.05 [ 0.05 I 5,220 [ 82 |

Table 6. Evaluation of multi-way registration on the Augmented ICL-NUIM dataset [7, 17]. Our
multi-way registration algorithm matches the accuracy of the state-of-the-art multi-way registra-
tion pipeline of Choi et al., but is 60 times faster.

6 Conclusion

We have presented a fast algorithm for global registration of partially overlapping 3D
surfaces. Our algorithm is more than an order of magnitude faster than prior global
registration algorithms and is much more robust to noise. It matches the accuracy of
well-initialized local refinement algorithms such as ICP, without requiring an initial-
ization and at lower computational cost. The algorithm may be broadly applicable in
computer vision, computer graphics, and robotics.
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