
Fast and Extensible Building Modeling from Airborne
LiDAR Data

Qian-Yi Zhou
University of Southern California

qianyizh@usc.edu

Ulrich Neumann
University of Southern California

uneumann@graphics.usc.edu

ABSTRACT
This paper presents an automatic algorithm which recon-
structs building models from airborne LiDAR (light detec-
tion and ranging) data of urban areas. While our algo-
rithm inherits the typical building reconstruction pipeline,
several major distinct features are developed to enhance ef-
ficiency and robustness: 1) we design a novel vegetation
detection algorithm based on differential geometry proper-
ties and unbalanced SVM; 2) after roof patch segmentation,
a fast boundary extraction method is introduced to pro-
duce topology-correct water tight boundaries; 3) instead of
making assumptions on the angles between roof boundary
lines, we propose a data-driven algorithm which automati-
cally learns the principal directions of roof boundaries and
uses them in footprint production. Furthermore, we show
the extendability of our algorithm by supporting non-flat ob-
ject patterns with the help of only a few user interactions.
We demonstrate the efficiency and accuracy of our algorithm
by showing experiment results on urban area data of several
different data sets.

Categories and Subject Descriptors
I.4.8 [Image Processing And Computer Vision]: Scene
Analysis—Range data

General Terms
Algorithm, Experimentation, Performance

Keywords
LiDAR(light detection and ranging), building modeling, seg-
mentation, building footprints

1. INTRODUCTION
3D building models have long been useful in a variety of

applications in geographic information systems, such as ur-
ban planning and virtual city tourism. In these applications,

.

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

1

2 3

4 5

6 7

(a) (b)

(c)

Figure 1: Building modeling of Oakland city: (a) input Li-

DAR data, point height is illustrated as intensity; (b) a his-

togram learned from original data showing the seven principal

directions of this area, which are also illustrated as arrows of

the same color in (a); (c) some building modeling results,

both orthogonal corners and non-orthogonal corners are re-

constructed correctly.

building models are preferred to be composed of several sim-
ple parts and organized in a meaningful way.

One way to obtain such data is to let skillful workers cre-
ate building models manually based on building blueprints,
aerial images and other data sources. This solution, how-
ever, requires a large amount of manual work, thus is both
slow and expensive. Airborne LiDAR (Light Detection and
Ranging) data, on the other hand, provides a faster and
lower cost means to gather first-hand data of selected urban
areas. With laser scanners equipped on aeroplanes, a 3D
point cloud is collected, which samples the surface of an ur-
ban site in an accurate and fast manner. Directly converting
LiDAR data into a DSM (Digital Surface Model) provides
us another way of obtaining building models. These models,
however, consist of millions of triangles and contain unde-
sired noise and vegetation. Therefore they satisfy neither
the simple requirement nor the meaningful requirement.

To bridge this large gap between LiDAR data and 3D
building models, much research effort has focused on the
building reconstruction problem. There are two major dif-
ferences between our work and the existing approaches. First,
we show that exploiting shared properties of specific types

Input LiDAR data Classified points

Classification

Planes of one patch

Plane

extraction

Boundary points

Boundary

detection

Building model

Modeling

Figure 2: Building modeling pipeline: classification separates vegetation points from roofs and ground; planes are extracted

from roof patches and boundaries of each plane are detected; finally, building models are reconstructed from boundary points.

of areas will lead to better reconstruction performance. In
this paper we concentrate on the urban areas. Our algo-
rithm can adapt to properties such as vegetation patterns
and buildings layouts, therefore yielding better result based
on the context knowledge. Second, experiments are done on
several data-sets of two cities and one industrial site to show
the generality and extendability of our approach.

1.1 Algorithm overview
In this paper, we present a fully automatic algorithm

which creates simple and meaningful building models from
urban LiDAR data. Our algorithm requires only the LiDAR
data as input and works directly on the original point cloud
without rasterization. This provides us with more informa-
tion especially at the multi-layered area,1 e.g. roof edges
and trees. Our output, on the other hand, is a set of water-
tight models, each of which is composed of a few triangles.
The boundaries of neighbor building components are aligned
together to reflect the relationship between them.

Most existing works on building reconstruction from Li-
DAR data follow a three-stage pipeline (Figure 2): first,
irrelevant parts such as trees and ground are removed from
the LiDAR data; second, roof patches are separated and
extracted from the remaining point cloud, and significant
features (e.g. boundaries) are detected; finally, with these
features, each roof patch is fitted to a pre-defined parametric
model which is further used in creating polygonal models.

While sharing a similar pipeline, we introduce novel mech-
anisms to adapt to urban properties and to enhance effi-
ciency. Our contribution mainly includes:

• For classification of vegetation from other urban ob-
jects, we introduce a SVM (Support Vector Machine)
algorithm which takes several differential geometry prop-
erties as features, instead of using global-aware fea-
tures such as height and intensity. Therefore, the learn-
ing algorithm only needs to be trained once, and the
solution could be reused in other data sets without
retraining.

• We propose an efficient and robust boundary extrac-
tion algorithm by extending the 3D OcTree contouring
algorithm in the field of volumetric geometry process-
ing[17]. Compared with existing boundary extraction

1
Note that LiDAR is composed of several pieces of scans from dif-

ferent perspectives, thus may contain multiple layers at the same x-y
coordinate.

algorithm, our method is topology-preserving, faster
and much easier to implement.

• For the last stage of the pipeline, we design a data-
driven algorithm which learns the principal directions
from original data, and aligns roof boundary segments
along these directions automatically. As shown in Fig-
ure 1, this mechanism enables us to handle arbitrary
angles and avoid the pre-assumption or preference for
specific angles between neighboring roof boundary seg-
ments which is often assumed in previous works (e.g.
90◦, 45◦ and 135◦ in [15]).

• We show our algorithm can be easily extended to han-
dle non-flat object patterns by adding minimal user
interaction.

The rest part of this paper is organized as follows: Section
2 summarizes the related literature to this paper; Section 3
presents the algorithm to detect and eliminate vegetation
(mainly trees) from original data; Section 4 describes our
boundary extraction algorithm; in Section 5, we illustrate
the final step of our pipeline - generation of final building
models; Section 6 presents an extension to our approach
for handling non-flat object patterns, as well as some im-
plementation details; Section 7 gives the experiment results
and Section 8 concludes the paper.

2. RELATED WORKS

2.1 Building modeling
Pioneer building modeling algorithms, e.g. [2][12][16][11]

[5][1], convert LiDAR point cloud into a DSM (Digital Sur-
face Model) as their first steps, and then apply image pro-
cessing algorithms on the depth images to detect building
footprints, fit parametric models and reconstruct polygons.
Although not explicitly mentioned in all papers, most works
follow the pipeline we summarized in Section 1.1. This
pipeline is proved to be both useful and efficient in previous
research.

Some recent research such as [14] and [15] have introduced
the direction of constructing building models from the orig-
inal LiDAR point cloud. These algorithms also follow the
common pipeline, and are similar to our algorithm in struc-
ture. Verma et al.[14] focus on automatic building topology
detection by searching pre-defined roof patterns in the roof-
topology graph; while Wang et al.[15] concentrate on build-

ing footprint extraction problem; both are different from our
approach.

Another related but orthogonal research direction to our
approach is to combine LiDAR data with other data sources.
For instance, Früh and Zakhor[4] introduce both ground
based and aerial LiDAR data. By integrating them, com-
plete building models are constructed to contain not only
detailed roofs, but also subtle facades. You et al.[16], on
the other hand, allow users to make a few clicks and use
these inputs as a heuristic guide in model reconstruction.
As a subsequent work, Hu et al.[6] employ aerial image and
ground images to achieve a higher-resolution solution.

2.2 Vegetation detection
As some researchers have pointed out, vegetation (trees)

are the most difficult part to be separated from building
roofs. Therefore, there are several works addressing this
problem such as [13][9][14][15]. In general, these works em-
ploy both geometry and reflection properties at each sample
point, and then use a classification algorithm to assign each
point to corresponding class. The classification algorithm
could be a simple thresholding[14], an SVM classifier[13], or
an Adaboost classifer[9][15].

2.3 Building footprint detection
Besides tree detection, another well-studied subproblem

is building footprint extraction. Haithcoat et al.[5] detect
building footprints from a depth image, then use an orthog-
onal simplification algorithm to turn these footprints into
rectangle corners. Wang et al.[15] raise a bayesian approach
in building footprint extraction, which shows a preference to
specific corner angles. Alharthy and Bethel[1]’s algorithm is
the most similar to ours. They also make the assumption
that boundary segments in a local area fall into a couple of
dominant directions. However, their algorithm simply de-
tects two orthogonal principal directions, thus limiting their
application.

3. VEGETATION DETECTION
As we have discussed in section 1.1, vegetation, mainly

in the form of trees in urban area, is an irrelevant part in
our task of building reconstruction and should therefore be
eliminated in the first step. Assume that p ∈ P is a sam-
ple point in the original LiDAR point cloud, Np = {q|q ∈
P, ‖p − q‖ < δ} denotes the set of points within a small
neighborhood of point p, and p is the centroid of all points
in Np, we compute five features based on the local differen-
tial geometry properties:

1. Regularity: we first measure if the point distribution
around a point is regular by calculating

F1 = ‖p− p‖. (1)

Intuitively, sample distribution around a roof point is
more likely to be regular, thus the distance between
original point and centroid point should be smaller
than that of vegetation points.

2. Horizontality: LiDAR captures roof from a top view.
Therefore, the normal at a roof point is more likely to
be vertical. In this case, we compute:

F2 = 1− |np · ez|, (2)

z=0 plane z=0 plane

(a) (b) (c)

Figure 3: Illustration of normal variation measurements: (a)

normals of points around a roof ridge; (b) normals of points

from (a), distributed in a Gauss sphere. Red/green/blue ar-

rows point to the eigenvectors of Cn
p with length equal to

corresponding eigenvalues; (c) normals of points in the neigh-

borhood of a tree point. Both λn
1 and λn

2 are large due to the

irregularity of normals.

where ez = (0, 0, 1) is the vertical direction, and np is
obtained through covariance analysis [10].2 In particu-
lar, we solve the eigenvector problem for the covariance
matrix

Cp =
1

|Np|
X

q∈Np

(q− p)(q− p)T .

The three eigenvalues are sorted in ascending order,
i.e. λ0 ≤ λ1 ≤ λ2; and the eigenvector corresponding
to the smallest eigenvalue, i.e. v0, is the approximated
normal at point p.

3. Flatness: with covariance analysis results, the flat-
ness at this point, also known as surface variation[10],
could be estimated as

F3 =
λ0

λ0 + λ1 + λ2
. (3)

Similar to the former features, a smaller flatness value
indicates more possibility for a point to be a roof point.

4. Normal distribution: once the normal at each point
is estimated, we could further apply another covariance
analysis on these normals, but within a different neigh-
borhood Nn

p = {q|q ∈ P, ‖p − q‖ < η}. We solve the
eigenvector problem for a normal covariance matrix

Cn
p =

1

|Nn
p |

X
q∈Nn

p

nT
q · nq,

and get corresponding eigenvalues λn
0 ≤ λn

1 ≤ λn
2 . As

Pauly [10] has pointed out, λn
1 measures the maxi-

mum variation of these normals on the Gauss sphere,
hence could be regarded as a kind of normal variation.
Therefore we define

F4 = λn
1 . (4)

A roof point prefers a smaller normal variation than a
tree point.
Moreover, we observe that λn

0 also reflects some kind of
regularity in normal distribution. An example is shown

2
Note that the covariance analysis needs enough sample points in the

neighborhood to make the matrix nonsingular. Hence, if the number
of points in Np is less than some specified number (experimentally,
we require at least 10 points), we make the reasonable assumption
that this point belongs to the noise category.

in figure 3. In this case, normals of points around a
roof ridge (which is a common pattern in buildings)
form two clusters on the Gauss sphere. Hence λn

1 (il-
lustrated as the length of the green vector in Figure
3(b)) is large while λn

0 (length of the blue vector in fig-
ure 3(b)) is very small. In contrast, normal distribu-
tion around a tree point is fairly irregular and exhibits
large λn

0 and λn
1 (shown in figure 3(c)). Therefore, our

last feature is defined as

F5 = λn
0 . (5)

To this end, we use a linear discriminative function to
classify trees from ground and roof area, denoted as:

K = ω0 + ω1F1 + ω2F2 + ω3F3 + ω4F4 + ω5F5, (6)

where ω0,1,2,3,4,5 are undetermined parameters which are
then learned using an unbalanced soft margin SVM algo-
rithm from a small urban area with manual labeling. We use
a third-party library SVM Light [8] as our implementation.
Once these parameters are determined, the classification al-
gorithm simply computes K for each point and determine
its category with sgn(K).

To further improve the classification results, we introduce
a voting algorithm as a post-processing step. The idea is
based on the fact that points of same category usually occur
together in space. Hence, for each point, we let all points
in its neighborhood Np vote for the category, and point p
belongs to tree category only if the percentage of tree votes
is greater than a certain value ω, which is also learned from
the labeled data set.

Note that all of the features are designed based on a local
geometry analysis, thus we avoid absolute variants such as
height and intensity to enhance the generalization ability of
the learned function. In our experiments, all the parameters
are learned from a 100m × 100m labeled area. They show
great adaptability on our testing data sets.

The only parameter we need to set for each data set is δ
and η. Empirically, we set δ to the value which makes the
average point number in Np between 13 ∼ 15, and η to two
times the value of δ.

Our classification algorithm achieves an accuracy above
95% on all testing set. The feature values and final clas-
sification results are shown in Figure 4. Note that our al-
gorithm could precisely classify trees and non-trees even at
areas where points of both categories have similar height and
are connected together.

4. ROOF BOUNDARY GENERATION

4.1 Planar roof patch extraction
Once trees are eliminated from the LiDAR data, we need

to identify ground points and separate different roof patches.
This is achieved using a distance-based region growing algo-
rithm. Starting from a random seed point p, the algorithm
searches its neighborhood Np, and assigns all untouched
points with its distance to p less than a certain parameter
α.3 By iteratively running this algorithm, the LiDAR point
cloud is divided into different patches. We accept the largest
patch as ground. To further improve the results, we intro-
duce a post-processing algorithm which merges low-height

3
We choose α = 1m in our experiments.

1 5

0 0.5 1

(a) (b) (c)

(d)

Figure 4: Tree detection and roof patch extraction of a piece

of Oakland city: (a) original LiDAR data, color intensity rep-

resents the height at each point; (b) green points are detected

as tree; (c) different roof patches are labeled with different

colors; (d) five features at each point within a highlight area.

large patches into grounds. This is reasonable as in some
area ground might be divided into several pieces due to the
cutoffs on roads caused by occlusion. Finally, we combine
roof patches with neighboring x and y coordinates into one
roof for certain building. Figure 4(c) shows such a result.

Note that our method for this mainly focuses on planar
roof patterns. Hence, we need to detect planar shapes from
roof patches. We use a clustering algorithm based on the
similarity between normals of neighboring points. In par-
ticular, the algorithm is similar to the region growing algo-
rithm presented in the previous paragraph: it also searches
the neighborhood Np of point p, but the classification is
based on normal difference, i.e. whether 1− |np · nq| < β.4

4.2 Boundary production
The next step in our algorithm is to mark boundary points

on each plane roof patch, which are later used in footprint
generation and polygon construction. Some previous works,
e.g. [15], find boundary points by measuring certain char-
acteristics of roof points. These kinds of methods, although
efficient, cannot guarantee a watertight manifold boundary,
hence it limits the subsequent processing. Other works use
2D delaunay triangulation to find polygonal boundaries, e.g.
Verma et al. [14] introduce a plane ball-pivoting algorithm to
triangulate roof points and detect boundaries. These algo-
rithms are able to generate perfect boundaries, however, the
efficiency is sacrificed. In addition, a robust implementation
for such algorithm is hard to achieve.

We propose an algorithm which combines the benefits of
these two kinds of algorithm. Our method is inspired by the
contouring algorithm in [17].

Initially, for each plane roof patch, all of the roof points
are projected to the same plane. Then a uniform grid is
applied onto this plane and all the grid cells containing roof
points are marked. These grid cells are defined as object
cells, which are illustrated as grey cells in Figure 5.

Note that each connected component of these object cells
is surrounded by a watertight polygonal boundary composed
of grid lines and corners, shown as the red grid lines and cor-
ners in the figure. Therefore, we construct a closed boundary
for the LiDAR points as follows:

• For each boundary grid line l, which separates an ob-
4
Any β between 1−cos(5◦) and 1−cos(10◦) is fine in our experiments.

Figure 5: An illustration of the boundary extraction algo-

rithm. Circles represent the LiDAR points projected on the

plane. The red circles and red edges connecting them form

up the boundary.

ject cell cin and a background cell cout, we take the
nearest LiDAR point to l in cin as a boundary point
p(l), shown as red circles in Figure 5.5

• For each boundary grid corner c, which connects two
boundary grid lines l1 and l2, we add a boundary edge
(p(l1),p(l2)), shown as red thin edges in Figure 5.

In this way, we construct a watertight manifold boundary
for every component of object cells. Our method is easy
to implement, at the same time guarantees the correctness
of topology. A detailed correctness proof could refer to the
2D version of proofs in [17]. The completeness of geometry,
on the other hand, cannot be guaranteed by our method.
For example, in Figure 5, there is one point outside the
extracted boundary polygon. However, we find this not a
common case and our boundary is a good approximation
for later processing.

Another advantage of our algorithm is that it could sup-
port morphological operations in an easy manner. After
marking object and background cells, one could treat this
grid as a monochrome image and apply any morphological
operation onto it. Figure 6 illustrates an example from part
of an industrial site. Directly extracting boundaries from
the object patches produces numerous artifacts, shown in
(b). Hence, we introduce an opening morphological opera-
tion to remove the unimportant information as in (c).

(a) (b) (c)

Figure 6: Boundary extraction for part of an industrial site:

(b) without any morphological operation; (c) with an opening

morphological operation, most artifacts are removed.

Only one parameter is involved in our boundary extraction
algorithm, which is the unit length of the uniform grid. This
parameter gives us the control of the connectivity of the

5
To guarantee the correctness of topology, if a LiDAR point is as-

signed to different boundary grid lines, we duplicate it and assign
different copies of this point to different lines. These copies might be
merged together in later processing if the correctness of topology is
not violated.

0 0.5 1 1.5 2 2.5 3
0

50

100

150

(a) (b)

(c)

(d)

Figure 7: An illustration for the snapping algorithm: (a) Li-

DAR input of a square piece of Denver city; (b) histogram of

tangent directions, an interesting observation is that 0◦ and

90◦ are also counted as principal directions due to the cut area

boundary; (c) from left to right, initial point cloud, extracted

boundary loops, snapped boundaries, and constructed polyg-

onal model; (d) closeups of boundaries before and after snap-

ping.

patch, similar to the ball radius parameter in ball-pivoting
algorithm used by [14]. Based on our experience, we find
that a unit length equal to δ performs well on most of our
data sets.

5. BUILDING MODELING
In this section, we present a data driven algorithm which

generates simple and correct polygonal mesh models from
the extracted roof patch boundaries. Our main idea is based
on the following observations. First, most boundary line seg-
ments in a local area fall into a couple of directions, known
as principal directions. Second, if two roof planes are neigh-
bors when projected to the x− y plane, they are very likely
to share a same boundary line segment or be connected by a
vertical wall. In the latter case, the two line segments con-
nected by the wall are also overlapping on the x − y plane.
Based on these two observations, we design a 3-step algo-
rithm as follows.

5.1 Find principal directions
For each boundary point, we first estimate the tangent di-

rection across this point, by applying a 2D covariance anal-
ysis on seven nearby boundary points.6 The estimated tan-

6
Since we have a closed manifold boundary, we hereby find the nearby

boundary points by traveling on the boundary through two opposite
directions respectively.

gent directions of a building example is shown as the blue
lines across red boundary points in Figure 7(d).

Although in general these tangent directions should fol-
low the principal directions, yet due to the noise and insuf-
ficient sampling, boundaries often exhibit zigzags in detail
and hence the tangents do not follow the principal directions
very well in micro scope. As in Figure 7(d), blue tangent
lines do not follow the principal directions (illustrated as the
dark blue cross arrow) precisely.

To overcome the difficulty, we introduce statistical analy-
sis. In particular, we record the tangent directions for all the
boundary points in a local area, say a 1km× 1km area, and
build a histogram of direction angles. In this histogram, each
peak represents a principal direction, to which numerous
boundary points shows preference. Note that a histogram
may have several peaks. Hence, we use an iterative algo-
rithm to find all the peaks, as follows:

1. Find the highest peak in the histogram; take it as a
principal direction, denoted as dpeak.

2. Remove this peak from the histogram. Note that a
peak is similar to a Gauss distribution, hence we re-
move a whole section [dpeak − φ0, dpeak + φ1] from the
histogram, where φ0 and φ1 are found by following the
falling trend along x axis until reaching a local mini-
mum.

3. Repeat step 1 and step 2, until the highest peak does
not contain enough samples.

Figure 7(b) illustrates the direction histogram of a Den-
ver city piece shown in Figure 7(a). The four principal direc-
tions detected are 0◦, 43◦, 90◦, 133◦ respectively, which could
be separated into two orthogonal pairs. This phenomenon
fits into the observation made by the previous works that
orthogonal corners are a common pattern in building foot-
prints. In addition, we notice the 0◦ and 90◦ directions con-
tain less samples than the other two. In fact, this LiDAR
point cloud piece is a square cut from the original data set,
hence these two directions represent the directions at the
area boundary.

5.2 Snapping

5.2.1 Snap to principal directions
Once the principal direction set D is determined, we di-

vide the boundaries into line segments and align as many
segments to the principal directions as possible. This pro-
cess is performed for each boundary loop B through a greedy
algorithm as follows:

For each boundary point bi ∈ B, we test for every princi-
pal direction dk ∈ D, and count the number of continuous
boundary points of bi which agree with line l : (p − bi) ×
dk = 0, denoted as Count(bi,dk). The “agree” criteria is
defined based on the distance from point p to line l, i.e.

distance(p, l) =
|(p− bi)× dk|

|dk| < ε. (7)

We now pick the (bmax
i ,dmax

k) pair which maximizes
Count(bi,dk), take line lmax : (p − bmax

i) × dmax
k = 0 as

a boundary segment, and project the continuous boundary
points which agree with lmax onto lmax.

We ignore all the projected points, recalculate Count(bi,dk),
and find the next (bmax

i ,dmax
k) pair. The whole process

is done iteratively, until the maximal number of agreement
falls under a certain value (e.g. 10 points).

5.2.2 Neighbor segments snapping
The former snapping algorithm provides us line segments

aligning to the principal directions. However, as we have
pointed out, we could further improve the results by aligning
neighbor line segments of different plane patches onto the
same line. This is achieved through a neighbor segments
snapping algorithm, as follows:

• For two neighbor boundary segments on the same plane
patch, if they point toward the same direction and the
distance between them is under a certain value; then
we snap these two segments onto the same line. This
operation solves the case in which a line segment is
broken into two neighbor segments.

• For two boundary segments from different plane patch
on same building roof, if they point toward the op-
posite direction (i.e. are of the opposite orientation),
and the distance between them is under a certain value;
then we snap these two segments onto the same line
in x − y plane, while keep the z coordinates for each
segment. This operation eliminates the gaps between
neighbor plane patches due to the noise and insufficient
sampling.

Figure 7(d) shows a case of snapping. The boundary
points shown in the left figure are rather irregular, while
in the right figure, points have been snapped to the correct
line segments. Note that a red segment and a yellow seg-
ment are snapped together in the right figure. This exposes
as a vertical wall in the final reconstructed polygonal mesh.

5.3 Generate polygonal mesh
Finally, we finish the whole pipeline by constructing a

polygonal mesh from the extracted boundary line segments.
Typically, we construct a polygon for each boundary loops
on the plane patches, and further connect them to the ground
by adding vertical walls. Note that the boundaries we have
on each plane patch are already composed of topology-correct
loops. Thus, for each loop, we generate a polygon based on
the line segments. Consider a pair of neighbor segments of a
same boundary loop, if their end points are close enough, we
create a new footprint as the intersection point of these two
segments. Otherwise, we find the best approximation line to
the interior boundary points and thus link all the segments
into a complete polygon.

Figure 7(c) shows a whole pipeline to create a building
model. Starting from a building roof patch, plane patches
are detected and boundaries are extracted. Boundary points
are then snapped and form up the line segments. Finally, a
polygonal model is constructed from these segments, which
is shown in the last figure. The final result, produced from
9,778 roof points, only contains 72 triangles, yet representing
this building in a precise manner.

6. POST PROCESSING AND EXTENSIONS

6.1 Ground modeling
To construct the complete city model, we still need a

ground model which could be combined with the building

(a)

(b)

(c)

Figure 8: An example of an industrial site: (a) input LiDAR

data; (b) detected object patches, different patches are ren-

dered with different colors, ground and noise are dark-grey

and black respectively; (c) the reconstructed models, differ-

ent types of objects are generated in different ways.

models. We use the terrain geometry modeling algorithm
presented in [14]. Briefly speaking, a uniform grid is aligned
onto the ground points of our urban patch. If a grid cell
contains some ground points, its ground height is computed
as the average height of them. We then solve a Laplace’s
equation ∇2z = 0 taking the heights in all empty grid cells
as unknowns. In particular, for each empty cell at (i, j), we
have,

4zi,j = zi−1,j + zi+1,j + zi,j−1 + zi,j+1. (8)

With this equation array, all the heights could be cal-
culated and a DSM is generated from them as the ground
mesh.

6.2 Non-flat objects support
One limitation of the automatic pipeline presented in for-

mer sections is that it only supports flat roofs. However, in
some cases, there are some non-flat objects in our data set.
For example, figure 8(a) shows an industrial site in which
the most interesting objects are the oil tins and tanks rep-
resented in cylinder and cone shapes. These shapes increase
the complexity of the object reconstruction problem. How-
ever, fortunately, we find that these non-flat shapes usually
fall into only a few specific patterns. In this case, once the
pattern type is known, we could apply typical pattern recog-
nition algorithms such as RANSAC[3].

Therefore, we provide a user input mechanism to help
with this task. The initial LiDAR data is first segmented
into different patches and the noise and ground points are
removed from the data set. Now the object patches are
shown to the user as illustrated in Figure 8(b). The user
could move his mouse onto the object patch, click to select
this patch, and press a key to specify its pattern type, e.g.
cone, cylinder, or plane-roof object. Since we could extract
boundary loops for each object, as presented in the previous
sections, now we perform a RANSAC algorithm[3] based on
the specified pattern type input by the user. Finally, we
construct the complete model as shown in Figure 8(c).

7. EXPERIMENTS
We have tested our algorithm on several types of LiDAR

data taken from 3 data sets - Denvor city, Oakland city, and

an industrial site. The resolution of our data sets varies from
6 samples/sq.m. to 17 samples/sq.m. Our experiments show
that the time cost of our approach is proportional to the
number of points. We test all the data sets on a consumer-
level laptop (Intel Core2 1.83GHz CPU, 2G memory) with
an external hard disk, and find the ratio be around 8 min-
utes/million points.

Figure 9 shows the reconstruction results of a part of Den-
ver city. Our building models are composed of simple and
clean triangular meshes, and thus are ideal to some appli-
cations such as digital city visualization. In addition, the
basic structures of these building models are aligned tightly
together and form buildings of good shape. As shown in
closeups of Figure 9(b), these building models fit our initial
LiDAR point cloud in an excellent manner.

To further demonstrate the ability of supporting multiple
principal directions, we test our program on part of Oak-
land city, as shown in Figure 1. Seven principal directions
are automatically detected from the original data sets, illus-
trated as the arrows in Figure 1(a). Since our program has
no pre-assumptions on the corner angles, correct models are
generated with corners of angles between any two principal
directions, which may be 90◦, 45◦, or any other angle; shown
in Figure 1(c).

As we have pointed out in Section 6.2, there are cases
where our automatic flat roof detection algorithm cannot
work well. Hence, we propose a semi-automatic algorithm
which benefits from a few user inputs. Figure 8 demon-
strates an example of an industrial site. In this example,
we define three object patterns, namely, a standing cylinder
with a cone on top of it, representing a tin; a lying cylinder
representing a tank; and plane shaped roofs. Using our al-
gorithm, objects of all three patterns could be detected and
reconstructed, as shown in closeup of figure 8(c).

Finally, we would like to point out one limitation of our
algorithm. In this paper, we use airborne LiDAR data as
the whole input. However, this kind of data contains depth
information almost only from the top view, thus occlusion
becomes a serious problem in case when the “vertical wall
assumption” does not hold true. For example, in our indus-
trial site data set, we lack point samples under tanks and
pipes, hence we experience difficulties in reconstructing such
objects. Another observation is that, when we try to apply
our algorithm to the residential areas of some cities, trees
become the majority objects and house roofs are usually
partial occluded by the trees. In such cases, it is much more
difficult for our algorithm to extract the precise boundaries
for these roofs.

8. CONCLUSION
This paper presents an automatic building modeling al-

gorithm for airborne LiDAR data. The roof and ground
points are first separated from tree points by applying an
SVM method based on local geometry property analysis.
Once the plane roof patches are generated through clusters
of roof points, a novel boundary detection algorithm is ap-
plied to extract a watertight manifold boundary for each
planar patch. These boundaries are later analyzed to find
principal directions of a local area, which are used as the
guidance of a snapping algorithm. After all these steps,
most roof points are snapped onto certain boundary line
segments, and polygonal building models are produced from
them.

(a) (b) (c)

(d)

Figure 9: Building modeling from a 1km× 1km piece of Denver city: (a) input LiDAR data; (b) reconstructed building models

overlaying with initial point cloud; (c)(d) modeling result viewed from different perspectives.

Possible future work lies in the following directions. First,
since we do not have ground-truth building models to our
data set, it is a difficult task for us to analyze our results
quantitatively. However, we notice the lack of quantitative
error analysis is a common problem in this area. Hence, it
may be necessary to investigate approaches for measuring
the error of reconstructing results without ground-truth.

Second, since LiDAR data is normally a huge data set con-
taining several millions of points, it is a common solution to
divide the initial data set into several different pieces, each of
which could be loaded into memory and processed at a time.
Our implementation also follows this solution, however, we
find that additional processing is needed at the area bound-
aries. On the other hand, we notice that our algorithm runs
locally, i.e. any operation in our algorithm is a local oper-
ation which only involves points in a small neighborhood.
Therefore it is suitable to be made into an out-of-core im-
plementation, inspired from the streaming techniques[7]. In
addition, in our current implementation, we assume that
the principal directions remain the same in the same local
patch - this assumption may not hold for a large urban area.
Hence, it would be an interesting topic to study a global
principal direction model for the whole urban area.

9. ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their

valuable comments. We gratefully acknowledge the sources
of our data sets: Airborne 1 Corp. for Oakland, Sanborn
Corp. for Denver, and Chevron Corp. for the industrial site.
We thank Suya You and Yuan Li for helpful discussion. This
work is partially supported by a Provost’s Fellowship from
USC.

10. REFERENCES

[1] A. Alharthy and J. Bethel. Heuristic filtering and 3d feature
extraction from lidar data. In ISPRS Commission III,
Symposium 2002, pages 29–35, 2002.

[2] A. Elaksher and J. Bethel. Reconstructing 3d buildings from
lidar data. In ISPRS Commission III, Symposium 2002, pages
102–107, 2002.

[3] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM,
24(6):381–95, 1981.

[4] C. Früh and A. Zakhor. Constructing 3d city models by
merging aerial and ground views. IEEE Computer Graphics
and Applications, 23(6):52–61, 2003.

[5] T. L. Haithcoat, W. Song, and J. D. Hipple. Building footprint
extraction and 3-d reconstruction from lidar data. In
IEEE/ISPRS Joint Workshop on Remote Sensing and Data
Fusion over Urban Areas, pages 74–78, 2001.

[6] J. Hu, S. You, and U. Neumann. Integrating lidar, aerial image
and ground images for complete urban building modeling. In
3DPVT’06, pages 184–191, 2006.

[7] M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion.
Generating raster dem from mass points via tin streaming. In
Proceedings, Geographic Information Science, pages 186–98,
2006.

[8] T. Joachims. Svm light. http://svmlight.joachims.org/, 2004.

[9] S. K. Lodha, D. M. Fitzpatrick, and D. P. Helmbold. Aerial
lidar data classification using adaboost. In 3DIM’07, pages
413–20, 2007.

[10] M. Pauly. Point primitives for interactive modeling and
processing of 3d geometry. PhD thesis, ETH Zurich, 2003.

[11] G. Priestnall, J. Jaafar, and A. Duncan. Extracting urban
features from lidar digital surface models. Computers,
Environment and Urban Systems, 24(2):65–78, 2000.

[12] F. Rottensteiner. Automatic generation of high-quality building
models from lidar data. IEEE Computer Graphics and
Applications, 23(6):42–50, 2003.

[13] J. Secord and A. Zakhor. Tree detection in urban regions using
aerial lidar and image data. IEEE Geoscience and Remote
Sensing Letters, 4(2):196–200, 2007.

[14] V. Verma, R. Kumar, and S. Hsu. 3d building detection and
modeling from aerial lidar data. In CVPR 2006, volume 2,
pages 2213–2220, 2006.

[15] O. Wang, S. K. Lodha, and D. P. Helmbold. A bayesian
approach to building footprint extraction from aerial lidar data.
In 3DPVT’06, pages 192–199, 2006.

[16] S. You, J. Hu, U. Neumann, and P. Fox. Urban site modeling
from lidar. In Proceedings, Part III, volume 3 of ICCSA 2003,
pages 579–88, 2003.

[17] Q.-Y. Zhou, T. Ju, and S.-M. Hu. Topology repair of solid
models using skeletons. IEEE Trans. Vis. Comput. Graph.,
13(4):675–85, 2007.

