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Abstract

We present an automatic system to reconstruct 3D urban models for residen-
tial areas from aerial LiDAR scans. The key difference between downtown
area modeling and residential area modeling is that the latter usually con-
tains rich vegetation. Thus, we propose a robust classification algorithm
that effectively classifies LiDAR points into trees, buildings, and ground.
The classification algorithm adopts an energy minimization scheme based
on the 2.5D characteristic of building structures: buildings are composed
of opaque skyward roof surfaces and vertical walls, making the interior of
building structures invisible to laser scans; in contrast, trees do not possess
such characteristic and thus point samples can exist underneath tree crowns.
Once the point cloud is successfully classified, our system reconstructs build-
ings and trees respectively, resulting in a hybrid model representing the 3D
urban reality of residential areas.

Keywords: urban modeling, LiDAR, residential area, point cloud,
classification, 2.5D characteristic, tree modeling

1. Introduction

Urban modeling from aerial LiDAR scans has been an important topic in
both computer graphics and computer vision. As researchers mainly focus on
downtown areas containing various building structures such as skyscrapers,
modern office buildings, stadiums and convention centers; building recon-
struction is believed to be the core of urban modeling, which has attracted
much attention such as [2, 3, 4, 5, 6, 7, 8, 9, 10]. In these efforts, trees are usu-
ally considered as an interference to the urban modeling problem, and thus
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(a) Input aerial point cloud (c) Aerial imagery as a reference(b) Our modeling result

Figure 1: Given (a) a dense aerial LiDAR scan of a residential area (point intensities
represent heights), we reconstruct (b) 3D geometry for buildings and trees respectively.
(c) Aerial imagery is shown as a reference. This figure was previously published in [1] and
is republished with permission by Springer.

are detected and removed from the input by classification in pre-processing.
Existing classification algorithms apply heuristics or machine learning ap-
proaches on point features including height, intensity, and local geometry
information.

However, two new challenges emerge when the urban modeling problem
extends to residential areas. First, as shown in Figure 1(a), vegetation is a
major component of urban reality in residential areas. An urban modeling
method for residential areas should detect and reconstruct both buildings
and trees, e.g., as we did in Figure 1(b). The second challenge lies in the
classification method: dense LiDAR scans capture the detailed geometry of
tree crowns, which may have similar height and local geometry features as
rooftops of residential buildings. Figure 2 shows such an example where
part of the tree crown shows similar or even better planarity than part of
the rooftop (see closeups illustrating local points as spheres together with
the optimal plane fitted to them). Classification algorithms based on local
geometry features may fail and produce significant modeling errors. E.g.,
Figure 2 right.

To address these two challenges, we present a robust classification method
to classify input points into trees, buildings, and ground. Building models
and trees are created from these points using a state-of-the-art building re-
construction algorithm [8] and a novel leaf-based tree modeling approach,
respectively. The heart of our classification method is a simple, intuitive, but
extremely effective measurement. In particular, we observe that residential
buildings usually show a strong 2.5D characteristic, i.e., they are composed
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Figure 2: Local geometry features become unreliable when dealing with residential areas
with rich vegetation. In closeups of (A) a tree crown region and (B) a rooftop region,
points are rendered as spheres while a locally fitted plane is rendered in yellow. Middle:
classification results of [7], trees in green, buildings in purple, and ground in dark grey.
Right: modeling artifacts are created because of classification errors. Part of this figure
was previously published in [1] and is republished with permission by Springer.

of skywards roofs and vertical walls; both are opaque and thus prevent the
laser beams from penetrating the building structure. Therefore, there is no
point sample inside the building structure. The rooftops (or ground) become
the lowest visible surface at a certain x-y position, as illustrated in Figure 3
left. In contrast, trees, composed of branches and leaves, do not have this
2.5D structure. With multiple passes of scanning from different angles, the
point cloud captures not only the top surface of the tree crown, but also
surfaces inside and underneath the crown, as shown in Figure 3 right.

Second pass

First pass First pass
Second pass

Point samples

Building

Tree

Ground Ground

Figure 3: While building structures have a 2.5D characteristic, trees do not possess such
property. Dense laser scans may capture surface points under the tree crown (right). This
figure was previously published in [1] and is republished with permission by Springer.

Contributions: To the best of our knowledge, we are the first to address
the urban modeling problem for residential areas with rich vegetation from

3



aerial LiDAR scans. We specifically list our novelties as follows:

1. We observe the key difference between building structures and trees
from the perspective of the 2.5D characteristic. Based on this observa-
tion, we propose an effective algorithm to classify trees, building roofs,
and ground.

2. We propose a complete system for urban reconstruction of residential
areas. A hybrid model containing both 2.5D building models and leaf-
based tree models is generated in an automatic and robust manner.

Given that this paper is an extension to the conference paper [1], we
list the major improvements as follows. In Section 2, we review the related
work from three aspects and explicitly identify the novelties of our method.
Section 3 includes more implementation details and an analysis of our clas-
sification algorithm demonstrated using Figure 4. In Section 4, concepts
from [8] are briefly explained in the footnotes; a discussion regarding occlu-
sion in the building modeling process is given in Section 4.2. We add more
experimental results in Section 5 including: qualitative experimental results
on two new data sets, statistical tables, and a quantitative comparison based
on a novel error measurement. Finally, possible future work is proposed in
Section 6.

2. Related Work

We review the related work from three aspects: urban modeling from
aerial LiDAR, tree detection in LiDAR, and tree modeling.

2.1. Urban Modeling from Aerial LiDAR

Urban modeling from aerial LiDAR is an important topic that has drawn
much attention in both computer graphics and computer vision communi-
ties. Recent research work [4, 5, 6, 7] introduces an automatic urban mod-
eling pipeline involving three key steps: classification detects and removes
trees from the input point cloud; segmentation splits individual building roof
patches out of the ground; and building reconstruction focuses on creating
compact and accurate mesh models to represent the geometry of building
structures.

Since downtown areas are usually the main target of reconstruction, mod-
ern urban modeling methods emphasize on building structures. For in-
stance, Verma et al.[6] explore the roof topology graph connecting planar
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roof patches. Lafarge et al.[2] find the optimal configuration of 3D building
primitives using a RJMCMC sampler. Matei et al.[4] and Poullis and You [5]
create building models adapted to Manhattan-World grammars via different
approaches. Zebedin et al.[11] generate both planar roof patches and surfaces
of revolution. Toshev et al.[12] propose parse trees as a semantic represen-
tation of building structures. Lafarge and Mallet [3] combine primitives and
a general mesh representation to achieve hybrid reconstruction. Shen et
al.[13] focus on building facade segmentation. Zhou and Neumann develop
both data-driven modeling approaches [8, 9] and primitive-based method
that supports global regularities [10].

The 2.5D characteristic of building models is first formally observed
and defined in [8], as “building structures being composed of detailed roofs
and vertical walls connecting roof layers”. Many research efforts exploit this
characteristic to help building reconstruction either implicitly [4, 5, 6] or
explicitly [3, 8, 9, 10].

We extend the emphasis of urban modeling problem from downtown areas
to residential areas. As stated in Section 1, we address the challenges in both
classification and reconstruction brought by rich vegetation in the residential
areas.

2.2. Tree Detection in LiDAR

In urban modeling systems, trees are often recognized as outliers and
thus are classified and removed in the first step. Most of the classification
algorithms rely on point-wise features including height [3, 14, 15, 12] and
its variation [16, 14, 15], intensity [14, 15], and local geometry information
such as planarity [3, 6, 7], scatter [3, 12, 7], and other local geometry fea-
tures. Heuristics or machine learning algorithms are introduced as classifiers
based on the defined feature set. To further identify individual building roof
patches, segmentation is either introduced in a post-classification step, or
combined with classification in the form of energy minimization such as [3].

Nevertheless, we are the first to introduce the 2.5D characteristic of build-
ing structures into the classification problem. We propose a simple, efficient
and effective classification algorithm that gains great accuracy in residential
areas with rich vegetation.

2.3. Tree Modeling

Tree modeling is a missing part in most of the aerial LiDAR based urban
modeling approaches. To the best of our knowledge, Lafarge and Mallet [3]
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is the only research work which addresses the tree modeling problem by
matching simple ellipsoidal template to tree clusters. This method, however,
is problematic when dealing with complicated tree structures in residential
areas, e.g., Figure 1(a).

Computer graphics and remote sensing communities have made great
efforts in modeling trees from ground LiDAR and imagery, such as [17, 18,
19, 20, 21, 22]. A general tree model is broadly adopted in these literatures,
composed of skeletal branches and leaves attached to them. Inspired by these
efforts, we propose leaf-based tree modeling from aerial LiDAR scans.

3. Point Cloud Classification

Given an aerial LiDAR point cloud of a residential area as input, the
objective of classification is to classify points into three categories: trees,
buildings, and ground. As mentioned in Section 1 and illustrated in Figure 3,
the 2.5D characteristic is the key difference between trees and buildings (or
ground). In order to formulate this concept, we discretize the point cloud by
embedding it into a uniform 2D grid G. In each grid cell c, the point set P (c)
is segmented into multiple layer fragments L(c), using local distance-based
region growing. Ideally, a layer fragment lbuilding ∈ L(c) lying on a 2.5D object
(rooftop or ground) must have the lowest height among all layer fragments
in L(c), because the rooftop (or ground) is always the lowest visible surface
to laser beams at a certain x-y position, as analyzed in Section 1. On the
other hand, a tree layer fragment ltree can exhibit any height. However, as
there is usually a ground or rooftop surface underneath tree samples, ltree is
not expected to be the lowest layer fragment in L(c). Therefore, we check all
the layer fragments in each cell, assign only the lowest layer fragment as non-
trees (rooftop or ground), and classify the rest layer fragments as trees. As
shown in Figure 4(b), this novel criterion creates good classification results
between trees and non-trees (for clarity, trees are not shown in this figure).
From an energy minimization perspective, this 2.5D characteristic criterion
can be quantized with a data energy term Ed(xl) for each l ∈ L(c) as:

Ed(xl) =


α if xl = building or ground, and l is not the lowest in L(c)
β if xl = tree, and l is the lowest layer fragment in L(c)
0 otherwise

(1)

where xl is the label of layer fragment l.
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To further discriminate building and ground in the energy minimization
framework, we introduce elevation of layer fragment e(l) defined as the height
difference between l and the ground elevation at c’s center1. Another data
energy term Eg(xl) is defined accordingly:

Eg(xl) =


γ ·max(1− e(l)

σ
, 0) if xl =building

γ ·min( e(l)
σ
, 1) if xl =ground

0 if xl =tree

(2)

where σ is the normalization factor. Empirically, σ = 6m, as suggested in [3].
With a smooth energy Es(xl1 , xl2) defined over all neighboring layer frag-

ment pairs (i.e., layer fragments belonging to neighboring cells and satisfying
certain distance criteria), we build a Markov Random Field which leads to an
energy minimization problem over the labeling x of the entire layer fragment
set L:

E(x) =
∑
l∈L

(Ed(xl) + Eg(xl)) + λ
∑

(l1,l2)∈N

Es(xl1 , xl2) (3)

where N is the set of neighboring layer fragment pairs, and smooth energy
Es(xl1 , xl2) is defined as characteristic function 1xl1

̸=xl2
.

With the energy minimization problem being solved using the well-known
graph-cut method [23], point labels are determined as the label of the cor-
responding layer fragment. To further construct roof patches from building
points, a region growing algorithm is applied based on certain distance crite-
ria. While large building patches are adopted as rooftops, small patches are
considered as outliers and removed henceforth.

Figure 4 demonstrates the entire process of point cloud classification.
Input points are first discretized into layer fragments. For illustration pur-
pose, Figure 4(b) shows only the lowest layer fragment in each cell. They
faithfully capture the skyward surfaces of 2.5D structures. By solving an
energy minimization problem, building and ground layer fragments are de-
tected and shown in Figure 4(c). Because of the smooth energy term, eaves
are segmented as part of the building roof, and small clusters of tree layer

1Empirically, the ground elevation map is easily estimated by assigning a 20m-by-20m
coarse grid, estimating ground height with the lowest point in each cell, and applying
linear interpolation across the entire coarse grid. More accurate (and more complicated)
ground elevation estimation methods can be found in related literatures [3, 12, 7].
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Layer fragments representation

(a) Input points (b) Lowest layer fragments in cells

(c) Building and ground layer fragments

(tree layer fragments not shown for clarity)

(d) Points with classification results

Figure 4: A demonstration of the classification algorithm: (b) the lowest layer fragments
faithfully capture the skyward surfaces of 2.5D structures; (c) building and ground layer
fragments are rendered in purple and grey respectively; (d) trees and outliers are in black
while building roof patches are rendered in bright colors.

fragments with low heights are correctly detected, as illustrated in the close-
ups respectively. Finally, the classification result is applied to the point
cloud and a region growing algorithm successfully groups roof patches from
building points, i.e., Figure 4(d).

Here we highlight the differences between our approach and the classifi-
cation algorithm in [3]. Although both methods utilize a Markov Random
Field, the key features in [3] that classify trees and non-trees are local geom-
etry features (planarity and scatter). Thus, it may fail for residential areas
due to similar local geometry features of trees and non-trees, as demonstrated
in Figure 2. On contrast, our classification approach benefits from the pow-
erful 2.5D characteristic criterion, and thus successfully classify points into
trees, building and ground, as shown in Figure 4.
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4. Modeling of Urban Elements

Based on the successful classification of input points, we introduce differ-
ent modeling approaches for trees, buildings, and ground respectively.

4.1. Tree Modeling

Modern tree modeling approaches adopt a general tree structure com-
posed of skeletal branches and leaves attached to them. Tree reconstruction
usually begins with a branch generation algorithm followed by a leaf model-
ing approach. However, unlike ground-based laser scans and imagery, aerial
LiDAR data captures very few samples on branches, making branch gener-
ation a difficult task. Therefore, we choose to directly model tree leaves by
fitting surface shapes around tree points having sufficient neighbors.

In particular, for each tree point p with sufficient neighbors, Principal
Component Analysis is applied to its neighboring point set N(p) to fit an
ellipsoid. Eigenvectors v0,v1,v2 and eigenvalues λ0, λ1, λ2 of the covariance
matrix represent the axes directions and lengths of the ellipsoid respectively.
We employ the inscribed octahedron of the ellipsoid to represent the local
leaf shape around p. Specifically, an octahedron is created with six vertices
located at {vp ± sλ0v0,vp ± sλ1v1,vp ± sλ2v2}, where vp is the location of
p and s is a user-given size parameter.

A uniform sampling over the tree point set Ptree can be applied to further
reduce the scale of the reconstructed models.

4.2. Building Modeling

We adopt 2.5D dual contouring method [8] to create building models from
rooftop patches through three steps: (1) sampling 2.5D Hermite data over
a uniform 2D grid, (2) estimating a hyper-point2 in each grid cell, and (3)
generating polygons.

The only challenge in applying 2.5D dual contouring to residential area
data lies in rooftop holes caused by occlusion. To solve this problem, we
add a hole-filling step right after 2.5D Hermite data is sampled from input
points. In particular, we scan the entire 2D grid to detect rooftop holes, and
solve a Laplace’s equation ▽2z = 0 to fill these holes, where z represents

2A hyper point is a series of 3D points having the same x-y coordinates but different z
values.
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Data set Point # Resolution
Building

#
Building
triangle #

Building
error rate

Octahedron
#

Atlanta area
#1

5.5M 22.9/m2 418 55,568 1.1% 52,924

Atlanta area
#2

4.0M 18.8/m2 323 61,492 0.7% 29,151

Denver area 1.0M 6.3/m2 290 42,942 0.6% 17,054

Table 1: Statistics of the experiments on three different data sets

Data set Classification
Normal

estimation
Building
modeling

Tree
modeling

Total time

Atlanta area #1 9s 45s 54s <1s 109s

Atlanta area #2 6s 29s 32s <1s 68s

Denver area 3s 8s 11s <1s 23s

Table 2: Execution time of each step in our system

the heights of surface Hermite samples at grid corners3. Existing surface
Hermite samples serve as the boundary condition of the Laplace’s equation.

In practice, since trees do not have the 2.5D structure, a point cloud
composed of multiple scans from different perspectives can capture most
of the rooftop even it is underneath tree crowns. The occlusion is usually
insignificant, and is successfully handled by the hole-filling step.

4.3. Ground Modeling

Ground models can be easily created by rasterizing ground points into a
DSM (digital surface model). Holes are filled via linear interpolation.

5. Experimental Results

Our system is tested on various data sets. For each data set, we adapt the
following parameter configuration with respect to the data resolution. The
length of the grid cell r is set to 3√

d
given d as the point density in m−2, to

ensure sufficient samples in each grid cell. In the initial region growing step
which determines layer fragments, a pair of points with distance less than
r are taken as neighbors. In our classification algorithm, energy function
parameters, i.e., {α, β, γ, λ} are set to {1.0, 2.0, 0.5, 4.0} empirically. This
parameter configuration works well for all the data sets we have tested. Once

3Surface Hermite data is sampled per grid corner, by intersecting a vertical line and
the rooftop surface [8].
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Atlanta area #2 Denver area

Figure 5: Our residential urban modeling system is tested on multiple data sets from
different sources. We robustly reconstruct urban reality despite the variation in data
resolution, building patterns, and tree types.

roof points are detected and grouped into roof patches, those roof patches
with less than d samples (per m2 sample number) are considered as outliers
and removed henceforth. In tree modeling, octahedron size s is chosen by
the user in the interval [1

r
, 3
r
]. We show experimental results with s = 2

r
.

Figure 6 shows our urban reconstruction results for a 520m-by-460m res-
idential area in the city of Atlanta. The input contains 5.5M aerial LiDAR
points with 22.9/m2 resolution. Our algorithm reconstructs 56K triangles for
building models, and 53K octahedrons as tree leaves, in less than two min-
utes on a consumer-level laptop. As illustrated in the closeups of Figure 6,
our classification algorithm successfully classifies points into trees, ground,
and individual building patches (second column). A hybrid urban model
is generated by combining 2.5D polygonal building models and leaf-based
tree models (third column). Aerial imagery is given in the last column as a
reference.

We then test our residential urban modeling system on another two data
sets, with data resolution ranging from 6/m2 to 19/m2. Visually appealing
urban models are reconstructed respectively, despite the variation in point
density, building model patterns, and tree types, as shown in Figure 5. To
quantitatively evaluate the modeling results, we count the false positives
(unexpected results) and false negatives (missing results) of buildings by
comparing our results with aerial imagery as a trusted external judgement.
In all three experiments, no false negative is found, i.e., all building structures
are successfully detected and reconstructed by our system. In addition, false
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positives exist in the form of small building-like trees and incorrectly classified
ground components. We thus calculate the error rate as the ratio of the
number of triangles in false positives to the total number of triangles in all
building models4. Table 1 contains statistics of the three experiments, in
which error rates are generally low. Table 2 shows the computation time,
measured on a laptop with Intel i-7 CPU 1.60GHz and 6GB memory.

6. Conclusion and Future Work

In this paper, we address the complicated problem of reconstructing ur-
ban models for residential areas with rich vegetation. We observe the key
difference between buildings and trees in terms of the 2.5D characteristic:
while buildings are composed of opaque skyward rooftops and vertical walls,
trees allow point samples underneath the crown. This feature enables a pow-
erful classification algorithm based on an energy minimization scheme. By
combing classification, building modeling and tree modeling together, our
system automatically reconstructs a hybrid model composed of buildings
and trees from the aerial LiDAR scan of a residential area. Our experiments
demonstrate the effectiveness and efficiency of our system.

Possible future work lies within two major directions. First, besides trees,
buildings, and ground, more urban element categories can be explored. For
instance, Figure 6(b) top left shows a building under construction (see LiDAR
scan and aerial imagery). It is not considered as a complete building structure
since it has no roofs. Thus, our current approach classifies it as trees and
create leaves for it. Future research may consider it as other category such
as wall and model it with different manners. The second future research is
to integrate aerial LiDAR with other sources such as aerial imagery, ground
LiDAR, and street view images. More realistic model can be created by
combining both geometry and visual information from various data sources.

4In residential areas, buildings and trees have similar local geometry properties, and
are spatially close to each other. It is very difficult even for a human being to label ground
truth classification on the point cloud. Thus, it is impractical to make traditional quality
measurements such as point-based error rate. We adopt the building error rate as a simple
and intuitive measurement for our application.
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Input point cloud Classification results Urban reconstruction Aerial Imagery

Atlanta area #1

Figure 6: Urban models reconstructed from 5.5M aerial LiDAR points for a residential
area in the city of Atlanta. Part of this figure was previously published in [1] and is
republished with permission by Springer.
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