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Abstract. Fundamental group is one of the most important topological invariants
for general manifolds, which can be directly used as manifolds classification. In
this work, we provide a series of practical and efficient algorithms to compute
fundamental groups for general 3-manifolds based on CW cell decomposition.
The input is a tetrahedral mesh, while the output is symbolic representation of its
first fundamental group. We further simplify the fundamental group representa-
tion using computational algebraic method. We present the theoretical arguments
of our algorithms, elaborate the algorithms with a number of examples, and give
the analysis of their computational complexity.
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1 Introduction

Topology studies the properties of geometric objects which are preserved under con-
tinuous deformation. In biomedical fields, topology has been applied for classification
and identification of DNA molecules, and topological changes are considered as indi-
cations of some important chemical changes [1, 2]. In CAGD field, a rigorous, robust,
and practical method to compute the topologies of general solids, in order to improve
the robustness and reliability of CAGD systems required for automation of engineering
analysis tasks, is also prefered [3–8].

The computational algorithms for surface topology are mature [9–16], while com-
puting the topologies of 3-manifolds still remains widely open. Both Homology group
and fundamental group are important topological invariants for 3-manifold. Although
homology group is much easier to compute than fundamental group, the price is that it
conveys much less information than fundamental group [17]. In theory, all 3-manifolds
can be canonically decomposed to a unique collection of prime manifolds, whose topolo-
gies are solely determined by their fundamental groups. Since most connected solids
in the real world are prime 3-manifolds, computing the fundamental groups for 3-
manifolds ia a practical solution to understand their topologies.

To the best knowledge of the author, there is no general practical system in engi-
neering fields, which can verify whether two 3-manifolds are topologically equivalent.
To tackle this problem, we present the first efficient algorithms to compute fundamental
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groups of general 3-manifolds represented by tetrahedral meshes. The computational
complexity of our algorithms are greatly reduced by converting an input tetrahedral
mesh (i.e., simplicial complex) to a CW complex [18].

2 Related Work

Computational topology has emerged as a very active field [1, 2, 19]. It is beyond the
scope of this paper to give a thorough review. Here we only briefly review the most
related works.

For a closed 2-manifold surface, the surface can be sliced into a simple polygon,
which is called polygonal schema. Since the boundary of polygonal schema provides
the loops for the fundamental group and the homology group of the surfaces, it has
been intensively studied in the field of computational topology. Vegter and Yap [9]
present an efficient algorithm on computing a canonical form of a polygonal schema
from a closed 2-manifold mesh. From the canonical form they introduce the algorithm
on computing the fundamental group for surface meshes. By using Seifert-van Kam-
pen’s theorem, Dey and Schipper [10] present a linear time algorithm for computing a
polygonal schema of a 2-manifold mesh. Lazarus et al. [13] provide optimal algorithms
for computing a canonical polygonal schema of a surface. Erickson and Har-Peled [14]
show that it is NP-hard to get an optimal polygonal schema, which has the minimal
boundary edge lengths. Colin de Verdière and Lazarus [15] provide the algorithm to
find an optimal system of loops among all simple loops obtained from a canonical
polygonal schema. Erickson and Whittlesey [20] introduce greedy algorithms to con-
struct the shortest loops in the fundamental group or the first homology group. Yin et
al. [16] compute the shortest loop in a given homotopy class by using universal covering
space.

We utilize the idea of reducing the problem dimension [10, 11, 21] in the compu-
tation of fundamental groups for 3-manifold with CW cell decompositions. In contrast
to the algorithms for computing homology groups [11, 21], this work focuses on com-
puting fundamental groups, which convey much more topological information in the
case of 3-manifolds. Furthermore, our method is general for 3-manifolds which even
can not be embedded in R3, and is efficient for large tetrahedral meshes reconstructed
from medical images.

3 Background

In out work, we convert input tetrahedral meshes, namely simplicial complexes, to CW
complexes, then compute their fundamental groups, which are represented as symbolic
representations. Here we only briefly introduce the concepts directly related with our
algorithms. We refer readers to [18, 22, 23] for more details.

3.1 Simplicial Complex

The topology of tetrahedral meshes is typically represented as a simplicial complex: a
set of 1, 2, 3 and 4-element subsets of a set of labels, corresponding respectively to the
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vertices, edges, triangles, and tetrahedrons of the mesh. A simplicial complex can be
considered as just the connectivity part of a traditional tetrahedral mesh.

(a)original solid torus (b) 0 and 1-cells (c) 2-cells (d) 3-cell

Fig. 1. CW Complex of a solid torus. The original solid torus in (a) is decomposed to one 0-cell,
shown in (b) with green color, two 1-cells shown in (b) as red arcs, two 2-cells in (c) and one
3-cell in (d).

3.2 CW Complex

CW complex is a generalization of simplicial complex, introduced by J.H.C.Whitehead
in 1949. Given a tetrahedral mesh, CW complex forms a topological skeleton of the
mesh, which is far more flexible than using simplicial complex representation.

A topological space is called an n-cell if it is homeomorphic to Rn. For example, a
0-cell is a point, a 1-cell is a space curve segment, a 2-cell is a surface patch and a 3-cell
is a solid. This homeomorphism maps the boundary of a n-cell to the (n-1) sphere.

Given a 3-manifold M with one component, a Hausdorff topological space X is its
CW complex if it can be constructed, starting from discrete points, by first attaching
1-cells, then 2-cells, then 3-cells, represented as

M0 ⊆M1 ⊆M2 ⊆M3.

Each Mk is called the k-skeleton, obtained with attaching k-cells to a Mk−1 by identify-
ing the boundary of the k-cells with the union of some collection of (k-1)-cells in the
complex. For example (shown in Figure 1), to construct a 3-dimensional CW-complex.
We begin with the empty set. Then we attach 0-cells by unioning disjoint points into the
set (shown in Figure 1(b)). We attach 1-cells by unioning space curve segments whose
endpoints lie on these points (shown in Figure 1(b)). We attach 2-cells by unioning sur-
face patches whose boundaries lie on the space curve segments (shown in Figure 1(c)).
We attach 3-cells by filling in closed regions bounded by surface (shown in Figure 1(d)).

A particular choice of a collection of skeletons and attaching maps for the cells is
called a CW structure on the space, which is not unique in general.

3.3 Fundamental Group

In a topological space X , we mean a path as a continuous map f : I→ X where I is the
unit interval [0,1]. Two pathes f0 and f1 which share two end points (i.e., f0(0) = f1(0)
and f0(1) = f1(1)) are homotopic to each other, if one can be continuously deformed to
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another in X while two end points are kept during the deformation. All pathes each of
which is homotopic to a path f is called a homotopy class of f , denoted by [ f ]. Given
two paths f ,g : I→ X such that f (1) = g(0), there is a composition f ·g that traverses
first f then g, defined by the formula

f ·g(s) =
{

f (2s), 0≤ s≤ 1
2

g(2s−1), 1
2 ≤ s≤ 1

In particular, suppose a path f : I→ X is with the same starting and ending point f (0) =
f (1) = x0 ∈ X , then f is called a loop, and the common starting and ending point x0 is
referred to as base point.

Definition 1 (Fundamental Group). The set of all homotopy classes [ f ] of loops f :
I→ X at the base point x0 is a group with respect to the product [ f ][g] = [ f ·g], which
is called the fundamental group of X at the base point x0, and denoted as π1(X ,x0).

If X is path connected, then for any base points x0,y0 ∈ X , the fundamental groups
π1(X ,x0) and π1(X ,y0) are isomorphic, therefore, we can omit the base point and denote
the fundamental group as π1(X).

We represent the fundamental group as < S;R >. It is a free group generated by S,
called the generator and represented as a set of non-commutative symbols. R is called
the relation, represented as words formed using these symbols.

4 Algorithm

Given a 3-manifold represented by a simplicial complex (a tetrahedral mesh) M, our
goal is to compute its fundamental group π1(M), represented as generators and rela-
tions 〈S;R〉. Considering that the number of the simplexes in M is in general high such
that direct computation is prohibitively expensive, our algorithms will be built on CW
complex representation of M instead of simplex representation. So the first step of our
algorithms is to compute the CW cell decomposition of the input tetrahedral mesh M.

Then the following lemmas give the keys of the next steps of our algorithms for
computing the generators and relations of M, which tell that they only depend on the
2-skeleton M2 and the 1-skeleton M1 of the CW complex representation of M. We refer
readers to Appendix for the proof.

Lemma 1. The fundamental group π1(M) is isomorphic to the fundamental group π1(M2).

Lemma 2. The fundamental group π1(M1) is a free group (only generators, no rela-
tions),

π1(M1) = 〈γ1,γ2, · · · ,γn〉.
Suppose M2 = M1⋃{σ2

1 ,σ2
2 , · · · ,σ2

n2
}, and σ2

i is 2-cell, then the boundary of each 2-
cell ∂σ2

i is a loop in M1. The fundamental group of M2 has the form

π1(M2) = 〈γ1,γ2, · · · ,γn; [∂σ
2
1 ], [∂σ

2
2 ], · · · [∂σ

2
n2

]〉

where [∂σ2
i ] is the homotopy class of ∂σ2

i in π1(M1), represented by a word formed by
γk’s.
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(a) (b) (c) (d)

Fig. 2. CW cell decomposition: (a) an input non trivial tetrahedral mesh, obtained by removing a
solid two hole torus from a solid sphere; (b) the 2-skeleton of the tetrahedral mesh; (c) the differ-
ent 2-cells in the 2-skeleton illustrated with different colors; (d) the 1-skeleton of the tetrahedral
mesh; vertices in the 1-skeleton whose valence is greater than two, belong to the 0-skeleton.

4.1 Computing CW Complex

Suppose M is a 3-manifold represented by a tetrahedral mesh. Our goal is to compute a
CW complex

M0 ⊆M1 ⊆M2 ⊂M3,

where Mk is the k-skeleton, obtained by attaching k-cells to Mk−1.
In the following discussion, the vertex, edge, triangle, and tetrahedron refer to

simplicial complex. The algorithm starts with an input tetrahedral mesh M, which is
equivalent to the 3-skeleton M3. Initially, we set M0, M1, and M2 as empty sets. Since
M3 = M2⋃{σ3

1 ,σ3
2 , · · · ,σ3

n3
}, where σ3

i is a 3-cell. Suppose ∆ 3 is a tetrahedron in M,
then ∆ 3 must belong to a 3-cell σ3

i . We merge all the tetrahedra sharing a face with ∆ 3

to ∆ 3 to form a bigger 3-cell. We keep growing this 3-cell until all the tetrahedra are
exhausted or the 3-cell can not be extended further, then the 3-cell is σ3

i . Then we select
another tetrahedron in M3 \σ3

i , and get another 3-cell. We repeat this process, until all
tetrahedron are removed. Then what left is the 2-skeleton M2.

The computation of 2-cells and 1-skeleton M1 is very similar. We select a triangle
∆ 2 ∈M2. By growing ∆ 2, we can find a 2-cell. By repeating removing 2-cells from M2,
we obtain M1. All the vertices in M1 whose valence is not equal to 2 form 0-skeleton
M0. The connected components of M1 \M0 are 1-cells.

Algorithm 1 gives the general procedure to get a k-skeleton from a (k+1)-skeleton.
Figure 2 shows an example of the CW cell decomposition from an input non trivial

tetrahedral mesh.

4.2 Computing Generators

According to propositions 1 and 2, the generators of π1(M) is equivalent to the the gen-
erators of π1(M1). To compute the generators of π1(M1), we can treat the 1-skeleton
M1 as a graph G by considering the 0-cells as nodes and 1-cells as edges. Then the gen-
erators of π1(M1) are simply those loops, whose compositions can generate all possible
loops in G.
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Algorithm 1 Computing CW Complex
Set a randomly picking (k+1) simplex ∆ k+1 as seed;
Set seed as a (k+1)-cell σ k+1 and marked;
queue += all the (k+1) simplexes sharing a face with seed;
repeat

repeat
Pop a (k+1) simplex ∆ k+1 out of queue;
Let τ be the common face of ∆ k+1 and σ k+1, where ∂∆ k+1∩∂σ k+1 = τ .
if ∆ k+1 has not been marked then

Grow the (k+1)-cell σ k+1 by including ∆ k+1 and τ;
Mark ∆ k+1;
queue += all the (k+1) simplexes sharing a face with ∆ k+1 while not marked;

end if
until queue is empty
Shrink current (k+1)-skeleton by removing this (k+1)-cell σ k+1, such that

Mk+1←Mk+1−σ
k+1;

if Some (k+1) simplexes ∆ k+1 in Mk+1 not marked then
Set one of them as seed and marked;
queue += all the (k+1) simplexes sharing a face with seed and not marked;

end if
until queue is empty
A k-skeleton Mk is obtained by removing all (k+1)-cells from Mk+1;

The algorithm is as following. First, we compute a minimal spanning tree T of G.
Then, the set of edges in G is partitioned into the set of edges in T and the set of non-
tree edges in G\T . Let eT and e¬T be an edge in T and a non-tree edge in G\T . When
we union each non-tree edge e¬T

i with T , a unique loop γi is generated in G. From the
property of the spanning tree of a graph, the set of {γ1,γ2, · · · ,γn} is the generators for
G, where n is the number of non-tree edges in G. Moreover, the set {γ1,γ2, · · · ,γn} can
be considered as the generators of π1(M) from the propositions.

4.3 Computing Relations

Since the boundary of each 2-cell is a loop in the 1-skeleton, they must come from the
concatenations of the generators of π1(M1) we just computed, and can be represented
as a word w. Considering the boundary loop of any 2-cell can be shrunk to a point in
M, the word w must equal to e. Therefore, w is a relation.

The following gives the algorithm based on the graph G and tree T computed from
previous algorithm Sec. 4.2. We first give an arbitrary orientation for each edge ei in
G. The symbol e−1

i represents the opposite direction for the orientation of ei. Then,
we select an arbitrary orientation of the 2-cell boundary and write down the boundary
with the sequence of symbols, by using the corresponds between 1-cells and edges in
G. Next, we eliminate the symbol ei (or e−1

i ) in the sequence if ei is an edge in the
spanning tree T . Then, each remaining symbol ei must correspond to a non-tree edge
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e¬T
j . Finally, we replace each symbol with the generator γ j, which corresponds to the

loop identified by e¬T
j .

4.4 Group Representation Simplification

The group representation obtained from previous procedures has redundancies. In order
to simply the presentation, we first remove some redundancies by the following simple
algorithm.

1. Sort the relations by their lengths.
2. For each relation with length one, w = γk, that means γk is homotopic to a point,

then we remove w from the relations and γk from the generators, and remove γk
from all relations.

3. For each relations with length two, w = γiγ j, that means γ j = γ
−1
i , then we remove

w from relators, γ j from the generators, and replace γ j by γ
−1
i in all relations.

4. Repeat step 1 through 3, until the lengths of all relations are greater than two.

Then we use the computational algebraic package GAP [24] for further simplifica-
tion, which is based on Tietze Transformation program [25] with four elementary Tietze
transformations to modify a representation to an isomorphic one.

1. Adding a relation If a relation can be derived from the existing relations then it may
be added to the presentation without changing the group.

2. Removing a relation f a relation in a presentation can be derived from the other
relations then it can be removed from the presentation without affecting the group.

3. Adding a generator Given a presentation it is possible to add a new generator that
is expressed as a word in the original generators.

4. Removing a generator If a relation can be formed where one of the generators is a
word in the other generators then that generator may be removed.

5 Experimental Results

In this section, we analysis the complexity of our algorithms, then apply to general
3-manifolds to compute their fundamental group.

5.1 Complexity Analysis

Suppose the input 3-manifold has n1 edges, n2 triangles and n3 tetrahedra, then the
complexity of the algorithm to convert it to a CW complex is linear, O(n1 + n2 + n3).
Suppose the number of k-cells in the CW complex is mk, k = 0,1,2,3, mk < nk. In gen-
eral, mk � nk and our algorithm ensures to minimize mk, m1 equals to the number of
the group generators, m2 equals to the number of relations. Then computing the group
generators is in m1 steps, and computing relations is less than m2 steps. Therefore, the
total complexity is O(n1 + n2 + n3)+ O(m1 + m2). The complexity of the final step to
use Tietze transformations to simplify the group representation is difficult to analyze.
Because in theory, finding the simplest representation of a group using Tietze transfor-
mation is undecidable. We use the heuristic algorithm, which is linear to the number of
generators and relations of the input group.
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5.2 General 3-Manifolds

We test our algorithms introduced in Sec. 4 on general 3-manifolds. Due to the page
limit, we only list one here. Figure 3 illustrates a complicated 3-manifold, constructed
by removing a solid knot and a solid two-hole torus from a solid torus. We compute its
fundamental group, which has four generators and three relations, as follows:

〈a,b,c,d;(b−1c−1bc),(a−1b−1dbd−1bab−1),
(b−1d−1bd−1ab−1a−1d−1aba−1daba−1b−1ab−1a−1d−1ab−1a−1daba−1d)〉

Fig. 3. A complicated 3-manifold is constructed by removing a solid knot and a solid two-hole
torus from a solid torus. Four loops are marked with different colors, each of which corresponds
a generator that cannot be shrunk to a point in the 3-manifold.

6 Conclusions and Future Work

In this paper, we provided a practical tool for computing the topology of general 3-
manifolds with their fundamental groups. For the input tetrahedral mesh, we perform
the CW cell decomposition to reduce the computational complexities. We also proved
that the generators of the fundamental group of a 3-manifold come from its 1-skeleton
and the relations come from its 2-cells in the CW complex. We presented the method to
simplify the fundamental group representation by algebraic symbolic computations.

In the future, we will apply our algorithms for applications such as isotopy detec-
tion, handle and tunnel loops detections [7], DNA molecular structure, path planning in
robotics, isotopy surface classification, and collision detection in animation.
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Appendix:

Proof. From the CW complex definition, M3 = M2⋃{σ3
1 , · · · ,σ3

n3
}. Let M̄2 be the tubu-

lar neighborhood of M2 (i.e., a thickened M2),

U1 = M̄2
⋃
{σ3

1 , · · · ,σ3
n3−1}, U2 = σ

3
n3

,

then both U1 and U2 are path connected. U1∩U2 is a tubular neighborhood of the bound-
ary of U2, which can retract to a sphere. Therefore, U1 ∩U2 is path connected. Both
π(U2) and π(U1 ∩U2) are trivial. By applying Seifert-van Kampen Theorem [18], we
get π(M3) = π(U1). This shows that the fundamental group is preserved by removing
a 3-cell. We can repeat this process to remove all 3-cells, then we get π(M3) = π(M̄2).
Because M2 is the deformation retract of M̄2, therefore π(M2) = π(M̄2) = π(M3).

Proof. By induction. Suppose n2 = 0, because the 1-skeleton M1 is a graph, therefore,
its fundamental group is a free group [18], π(M1) = 〈γ1,γ2, · · · ,γn〉, where γi’s are in-
dependent loops of the graph.

Suppose the proposition holds for n2 < k. Now assume n2 = k, M2 = M1⋃{σ2
1 ,σ2

2 , · · · ,σ2
k }.

Let M̄1 be the tubular neighborhood of M1,

U1 = M̄1
⋃
{σ2

1 ,σ2
2 , · · · ,σ2

k−1},U2 = σ
2
k ,

then both U1 and U2 are path connected. U1
⋂

U2 is a topological annulus, retracts to
∂U2. π(U2) is trivial, therefore the loop ∂U2 is homotopic to a point in U2. ∂U2 is a loop
in U1, we use [∂U2] to denoted its homotopy class in π(U1), which can be represented
as an element in π(M1), namely, a word formed by γk’s. By assumption,

π(U1) = 〈γ1,γ2, · · · ,γn; [∂σ
2
1 ], [∂σ

2
2 ], · · · [∂σ

2
k−1]〉

According to Seifert-van Kampen Theorem [18], π(M2) can be obtained by inserting
[∂U2] to the relations of π(U1), therefore

π(M2) = 〈γ1,γ2, · · · ,γn; [∂σ
2
1 ], [∂σ

2
2 ], · · · [∂σ

2
k ]〉


