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Figure 1: Rodin’s “The Burghers of Calais,” reconstructed from a stream of images produced by a handheld commodity range camera. The

statues are 2 meters tall.

Abstract

We present an approach to detailed reconstruction of complex real-
world scenes with a handheld commodity range sensor. The user
moves the sensor freely through the environment and images the
scene. An offline registration and integration pipeline produces a
detailed scene model. To deal with the complex sensor trajectories
required to produce detailed reconstructions with a consumer-grade
sensor, our pipeline detects points of interest in the scene and pre-
serves detailed geometry around them while a global optimization
distributes residual registration errors through the environment. Our
results demonstrate that detailed reconstructions of complex scenes
can be obtained with a consumer-grade camera.
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1 Introduction

Acquisition of high-quality digital representations of real-world
scenes is one of the key research goals in computer graphics. The

ability to easily create detailed three-dimensional models of physi-
cal environments can accelerate the production of computer games
and special effects, support retail and travel, and provide valuable
data for training computer vision systems. Consumer-grade range
cameras are a promising source of input for the creation of such
three-dimensional models. These cameras stream range images at
high frame rates [Microsoft 2010]. They are easily portable, low
cost, and widely available.

There are two difficulties in using range videos streamed by these
cameras to acquire detailed scene models that can be used for com-
puter graphics applications. The first is the fidelity of the data.
Consumer-grade range sensors have a narrow field of view and er-
rors of 2-3 centimeters at typical operating ranges [Khoshelham and
Elberink 2012]. The second difficulty is the complexity of the cam-
era trajectory that is necessary for a detailed reconstruction. In a
complex scene, the user must move the sensor along a trajectory
that weaves around objects to image them from many points of
view. Sufficient data must be acquired to minimize disocclusion
gaps and to redundantly image detailed objects so as to average
out errors in individual frames. In practice, medium-scale scenes
require minutes of input data in order to satisfactorily cover the sur-
faces of all objects in the scene. For example, the scene in Figure 1,
which spans an area of 50 square meters, was reconstructed from a
6 minute long input stream that contains over 11 thousand frames.

Continuous sensor trajectories are key to counteracting the imag-
ing errors, because they enable registering incoming frames to a
growing local model of the scene, which stabilizes the estimation of
camera pose and averages out input noise [Newcombe et al. 2011].
Yet detailed acquisition of complex scenes leads to long camera
paths with complex spatial structure. This necessitates the use of
global optimization to deal with the accumulated registration errors
[Henry et al. 2012]. Unfortunately, such global optimization dis-
tributes the residual error throughout the path and can corrupt the
detailed surface shape of objects in the scene.

In this paper, we present an approach to detailed reconstruction
of complex scenes with handheld commodity range sensors. The
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(a) Extended KinectFusion

(b) RGB-D SLAM

(c) Our result

Figure 2: Reconstruction of an indoor environment that was imaged in detail. (a) Extended KinectFusion accumulates registration drift over
the long and spatially extended camera trajectory and does not produce a globally consistent reconstruction. (b) A state of the art RGB-
D SLAM system produces a globally consistent reconstruction, but does not preserve local geometric detail. (c) Our approach combines
frame-to-model registration with global optimization and protects densely scanned parts of the scene.

key idea is to combine frame-to-model registration with an offline
optimization framework that handles loop closures and produces a
globally consistent reconstruction. We build locally fused models
for overlapping parts of the scene and use them to initialize a global
graph-based optimization that distributes residual error. To protect
detailed object shapes, we detect densely scanned points of inter-
est in the scene and preserve geometric detail in the surrounding
regions during the optimization.

‘We demonstrate that our approach produces globally consistent and
locally detailed reconstructions of indoor and outdoor scenes de-
spite the limited fidelity of the input data.

2 Related Work

Key early work on object reconstruction from range images was
conducted by Chen and Medioni [1992] and Turk and Levoy
[1994], who identified two stages in the reconstruction process:
registration, which brings the range images into alignment, and in-
tegration, which uses the aligned images to compute a single sur-
face representation. Both works used variants of the ICP algorithm
for registration, initialized by manual alignment. Turk and Levoy
described an integration scheme that merged triangle meshes cre-
ated from individual range images, producing a unified mesh for
the reconstructed object. Curless and Levoy [1996] further focused
on the integration stage and developed a volumetric technique that
fuses range images into a voxel grid. The grid stores a signed dis-
tance function (SDF) that represents a linear combination of dis-
tances to range measurements. This technique has been widely
adopted due to its robustness and generality. (See [Fuhrmann and
Goesele 2011] for a recent extension.)

Rusinkiewicz et al. [2002] pioneered the real-time acquisition of
object shapes by range imaging. In their system, the user slowly
rotates an object in front of a stationary structured light scanner
that produces range images at a high frame rate. Since the sys-
tem acquires many images per second, consecutive frames can be
registered to each other without initial manual alignment. Further,
a preview of the reconstructed shape can be shown to the user, to
help identify areas that have not been adequately imaged.

These ideas were applied to shape acquisition with a handheld
range sensor in the KinectFusion system [Newcombe et al. 2011].
The user moves the camera through a scene, which is represented
by an SDF over a voxel grid that is maintained by graphics hard-

ware. Each new range frame is registered to the SDF and fused into
it. One of the key insights of the work is that frame-to-model regis-
tration, which aligns each incoming range image to a growing vol-
umetric representation of the reconstructed scene, is significantly
more robust than frame-to-frame registration, which aligns consec-
utive frames to each other. With frame-to-model registration, each
registration step takes advantage of densely reconstructed scene ge-
ometry, aggregated and refined over many frames. This enables
highly accurate reconstruction of individual objects and small re-
gions (up to a few cubic meters in the original paper).

There are a number of limitations that prevent the basic Kinect-
Fusion pipeline from successfully producing detailed reconstruc-
tions of complex environments on a larger scale. The first, which
has been studied extensively in follow-up work, is that a uniform
voxel grid is memory-intensive and quickly exceeds the capacity
of graphics hardware. This can be addressed by using a hierar-
chical spatial subdivision [Zeng et al. 2013] or more generally by
sliding the volume through the scene to follow the camera, pag-
ing parts of the scene in and out as needed [Roth and Vona 2012;
Heredia and Favier 2012; Whelan et al. 2013]. The deeper limita-
tion is that while frame-to-model registration is substantially more
accurate than frame-to-frame registration, it is not infallible, partic-
ularly given the error magnitudes in consumer-grade range cameras
[Khoshelham and Elberink 2012]. Registration errors accumulate
over long acquisition trajectories and can break the reconstruction.
This is demonstrated in Figure 2(a), which shows the reconstruction
produced by the moving-volume approach for an indoor scene that
was imaged in detail. (We will refer to this approach as Extended
KinectFusion.) The underlying issue is the lack of global reasoning
on the camera trajectory and the scene, and specifically the lack of
loop closure handling.

Global optimization has been widely employed in reconstruction
from sets of range images [Pulli 1999; Huber and Hebert 2003;
Brown and Rusinkiewicz 2007] and in structure from motion es-
timation [Triggs et al. 2000; Agarwal et al. 2010; Wu et al. 2011].
Fewer works address the challenges of detailed reconstruction from
streams of highly inaccurate images produced by consumer-grade
range cameras. Weise et al. [2011] describe a loop closure handling
approach designed for acquisition of individual object shapes: the
object is deformed as-rigidly-as-possible to accommodate detected
loop closures. Cui et al. [2010] describe an object scanning pipeline
with a noisy handheld camera, but do not address loop closure and
other forms of global reasoning. Such issues have been considered



in depth in the context of simultaneous localization and mapping
(SLAM) in robotics [Williams et al. 2009]. Two recent techniques
apply global optimization to produce dense maps of indoor scenes
from streams of RGB-D data [Henry et al. 2012; Endres et al. 2012].
In these systems, loop closures are detected by matching features
extracted from range and color images; a graph is constructed that
connects all pairs of consecutive frames and closes loops; each pair
of frames connected by the graph is registered frame-to-frame; and
finally an optimization is performed on the graph to globally dis-
tribute the error accumulated in all the pairwise alignments. This
approach can produce dense maps for large environments, but is
not designed to handle the complex trajectories we encounter when
scanning scenes in detail and does not preserve detailed geometry
for objects throughout the environment (Figure 2(b)). An alterna-
tive approach to dense surface mapping from range video was de-
scribed by Ruhnke et al. [2012].

Scene reconstruction from collections of photographs has been
studied extensively in multi-view stereo reconstruction [Seitz et al.
2006; Furukawa and Ponce 2010; Goesele et al. 2007; Furukawa
et al. 2010]. Our problem is quite different in that we have a stream
of range images acquired along a continuous trajectory. Pollefeys
et al. [2004; 2008] reconstructed large-scale 3D scenes from video
streams. In our work, the availability of range data enables detailed
reconstruction of complex scenes even when reliable photometric
cues are not available.

3 Overview

Our approach begins by estimating a rough camera trajectory us-
ing an RGB-D SLAM system [Endres et al. 2012]. This provides
a dense map of the environment that is used as input for detect-
ing points of interest (POI). Figure 3 illustrates the process. We
perform density estimation in the map to detect parts of the envi-
ronment that were scanned particularly thoroughly. Since detailed
objects in the scene require prolonged imaging from many points
of view to capture their detailed geometry and eliminate disocclu-
sion gaps, we assume that pronounced density peaks correlate with
visual saliency and importance. Other algorithms for estimating vi-
sual importance can be used; we found the approach described in
the paper to perform well.

After we identify POI in the scene, we partition the camera tra-
jectory into segments associated with individual points of interest
as well as connector segments that primarily target other parts of
the scene. This is done by optimizing a multi-labeled Markov ran-
dom field, in which the data term estimates the degree to which an
individual frame targets a point of interest. The result of the opti-
mization is a segmentation of the trajectory.

This segmentation is used to construct locally fused models for
parts of the scene. Our approach creates a large number of over-
lapping local models, where detailed geometry is reconstructed on
a small scale, without artifacts caused by long-term accumulation
of registration drift and residual error from resolution of long-term
loop closures. We create a local volume around each POI and use
all parts of the trajectory that are associated with this POI to cre-
ate a local reconstruction. Connector segments are partitioned into
overlapping fragments and locally fused reconstructions are created
for each fragment.

The geometry obtained from these local models is not used directly
in the final reconstruction. Instead, these models are used to obtain
refined estimates for the camera pose. We use a two-pass frame-
to-model registration procedure that produces considerably more
stable and accurate estimates for relative camera pose. The first
pass, in which local volumetric models for parts of the scene are
constructed, is described above. In the second pass, we go over
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Figure 3: Scene analysis. Points of interest are identified as strong
modes in a density function induced by localized samples from the
input range images.

each trajectory segment again and register it to an already com-
pleted local model. We then take the transforms between pairs of
frames along the trajectory and associate them with edges in a pose
graph. These pairwise transforms are considerably more accurate
than what is obtained by progressive frame-to-model registration,
and this two-pass local registration is necessary for obtaining high-
quality results on a large scale. Two-pass frame-to-model registra-
tion was used in Figures 2(a) and 2(b): without it these reconstruc-
tions would look considerably worse.

After refined pairwise registration estimates are obtained as de-
scribed above, we optimize all camera poses along the trajectory
globally, using least-squares optimization over a pose graph. The
graph connects each consecutive pair of frames and includes edges
that close loops. Relative pose estimates for pairs of POI frames
are treated as hard constraints to preserve the detailed geometry
around points of interest and relative pose estimates that involve
connector frames are treated as soft constraints. Connector seg-
ments thus function as flexible buffers that absorb the residual error
during global optimization of the pose graph.

Finally, we integrate all the range images within a large volume
that encompasses the entire scene. We use a weighting scheme that
further protects POI geometry.

4 Points of Interest

4.1 Scene Analysis

The point of interest detection pipeline is summarized in Figure 3.
As described in Section 3, our pipeline begins by performing si-
multaneous localization and mapping on the input stream. We use
the RGB-D SLAM system of Endres et al. [2012]. The system pro-

duces a localized camera trajectory. Let T denote the rigid trans-
form that maps the k-th range image Dy, from its local coordinate
frame to the global scene coordinate frame. We uniformly sample
a set of points {pf} from Dy, for all k, to obtain a set of localized

points P = {T}, pf} that roughly map out the distribution of input
data over the scene. Our current implementation uses 2D density
estimation to estimate the locations of points of interest. We do not
see significant obstacles to estimating POI locations in 3D, but had
no need for it. We detect the dominant plane in the scene, which is
usually the ground plane, using RANSAC. Let [P, denote the pro-
jection operator onto this plane g. Consider the planar point set
P = {pF} = {P,(Tipl)}. We will identify POI locations by
finding modes in a density function estimated from P.



We weight the points to prioritize sample points based on their dis-
tance from the principal axis of the camera in their frame of origin,
since error magnitudes increase with distance from the principal
axis [Khoshelham and Elberink 2012] and users also tend to natu-
rally target objects of interest. The weight associated with point pf
is

wk :7'exp(—(df')2/202)7 €))

where d¥ is the distance between p¥ and the principal axis of the
camera at frame k, and 7 is a normalization constant.

We now estimate POI locations by finding modes in a density func-
tion p induced by the points P, weighted as described above. We
use mean shift [Comaniciu and Meer 2002]. The density is defined
as

p(x) =3, wiK(||x — pfll/h), ()

where K is the Epanechnikov kernel. We set the bandwidth h em-
pirically to 0.5m. We merge modes when their distance is below h.
The final set {s; } of identified POI is denoted by S.

4.2 Trajectory Segmentation

After POI locations have been determined, we partition the camera
trajectory into POI segments and connectors. We formulate this as a
labeling problem over the set of frames. For each depth image Dy,
the goal is to either associate it with a point of interest s;, which
corresponds to assigning it the corresponding label (Dj, ~+ s;) or
to make it a connector frame, which corresponds to assigning it a
special label ¢ (D ~» c). Since the frames form a path, the la-
beling problem can be naturally expressed in terms of a pairwise
multi-label Markov random field (MRF). We define the MRF en-
ergy as

E(L) ==Y Ea(ls; D) =AY Es(l, lita), €)
k k

where L is the labeling over all frames.

The data term E4(lx; Di) expresses the likelihood that the depth
image D, points to a particular POI or doesn’t specifically point
to any POI and can be labeled a connector. Specifically, for depth
image Dy, and POI s we define the data term in terms of proximities
of samples from Dy, to s:

Ea(s; Di) = 32, wi exp(||p} —s]|?/26%), 4

where w is the weight defined in (1) and & controls the range of
influence of points in the scene and is setto 6 = h/2. The data term
for [, = c is less direct, since there is no direct visual evidence for
a depth image being a connector. We set the energy of Dy ~+ c to
be inversely correlated with the confidence of the POI labels:

Eq(c; Dy) =& — max Ea(sj; Dr,), (5)

where £ = 0.4 in our implementation.

The smoothness term is defined as follows:

0 ifly = lgy1
Es(lk, lk+1) = — o0 if lk = Su and lk+1 = Su (6)
1 otherwise

This ensures that POI segments are buffered by connectors that can
absorb residual registration errors during the global optimization.
We optimize F(L) using graph cuts [Boykov et al. 2001]. Let
{M.} be the set of contiguously-labeled segments along the tra-
jectory. The label associated with a segment M, is denoted by
L(My) € SU{c}.

5 Scene Reconstruction

5.1 Two-Pass Registration

We use a two-pass procedure for estimating the relative poses of
pairs of frames. We first describe the procedure for POI segments.
The handling of connectors is described subsequently.

For each POI s;, we create a local volumetric model centered at
s;. The local model is initialized as an empty signed distance
function over a uniform voxel grid [Curless and Levoy 1996]. Let
Q; = {M|L(M;) = s;} be the set of POI segments associated
with s;. We perform two passes over Q;. The first pass performs
registration and integration for each segment as described by New-
combe et al. [2011]. This creates a fused model (specifically, an
SDF) for the local geometry around s;. In the second pass, we go
over each frame from each segment in Q; again and register it to
the SDF computed in the first pass. We do not integrate the frame:
we only use the already complete SDF to produce a stable estimate
for the camera pose for each frame. In both passes, registration
for each frame is initialized with the pose of the preceding frame
[Rusinkiewicz et al. 2002; Newcombe et al. 2011], with one ex-
ception: for the first frame in each segment in Qj, registration is
initialized by the pose estimate produced by the SLAM system dur-
ing the initial mapping pass. The second pass results in a refined
estimate T, for the pose of any frame D,, from any segment in Q;.
For the graph-based global optimization described in Section 5.2,
we will need estimates for the relative transforms between pairs of
frames associated with s;. For a pair of frames D, and D,, this
estimate is set to (T4)~'T7.

‘We now describe the two-pass registration procedure for connector
segments. The handling of connectors is slightly different because
they are not guaranteed to be spatially compact: a connector seg-
ment can be very long, both spatially and temporally. To produce
stable pose estimates for connector frames, we cover each connec-
tor segment M, by overlapping fragments of length x. The pre-
cise value of k is not particularly important, as long as it is large
enough to allow for a fused local model to be created and not so
large that substantial registration drift begins to accumulate. In our
implementation, k is set to 50. For each such fragment, we perform
two-pass registration as described above. We also extend connector
segments by a few frames on each end into the neighboring POI
segments, to obtain stable estimates for the relative pose of the ter-
minal frame on each end of the connector segment and the adjacent
POI frame.

To further stabilize relative pose estimation, we cover M; with
fragments so that each pair of consecutive frames is covered by
three distinct fragments. (Thus fragments begin at frames nk,
(n + 1/3)k, and (n + 2/3)k.) This yields three estimates for the
relative pose of two consecutive frames. We use these to identify
the most stable estimate as follows. Let the translational compo-
nents of the three transforms be denoted by t1, t2, t3. We consider
their distances ||t1 — t2||, ||tz — t3]|, and ||t3 — t1]|, and discard
the two estimates that span the longest distance.

Finally, we note that even highly stable frame-to-model registra-
tion can drift when dealing with featureless shapes, such as walls.
Therefore, when the linear system for minimizing the ICP energy
for a frame Dy is ill-conditioned, or when the camera translation
between consecutive frames is unreasonably large (> 0.1m), we
discard the ICP registration and use the initial pose estimate T,
instead.



5.2 Global Optimization

After obtaining fine-grained relative pose estimates for pairs of con-
secutive frames, we need to obtain globally consistent pose esti-
mates for all frames in the scene. Given the large error magnitudes
in the input data, registration errors invariably accumulate over long
trajectories. To minimize the aggregate error and distribute its resid-
ual, we use graph-based global optimization. To set up the pose
graph G, we first connect every pair of consecutive frames by an
edge. With each edge we associate a relative transform between
the pair of frames, computed as described in Section 5.1. So far,
the graph G is a simple path and does not reflect important loop
closures in the trajectory. Next, we identify loop closures, compute
refined relative pose estimates for pairs of frames that correspond
to these loop closures, and add corresponding edges to G.

Our starting point is the initial localization T, of each frame Dy,
introduced in Section 4.1. Consider the set {F; } of trajectory frag-
ments that include the POI segments (| J ; Q;) and the -fragments
that cover all connectors as described in Section 5.1. (The covering
of the input trajectory by fragments is a refinement of the cover-
ing by segments, in which connector segments are further covered
by fragments of length x.) Let F; be such a fragment. We use
frame-to-model registration to fuse F; and obtain a surface mesh.
With a slight abuse of notation, we will use F; to refer to both the
trajectory fragment and the corresponding mesh.

An initial localization ’i‘l for F; can be computed from the per-

frame transforms Ty for all Dy € F;. To establish loop closure
edges, we test each pair of fragments. Let JF;, F; be such a pair.
We attempt to align F; and F; using ICP. If F; and F; are tem-
porally overlapping, ICP is initialized using frame-to-model regis-
tration. (Specifically, consider a frame Dy, that belongs to both F;
and F;. The frame-to-model registration for F; and F;, mentioned
above, yields a transform that localizes D), within F; and a trans-
form that localizes Dy, within F;. These transforms can be used to
define an initial relative pose for F; and F;.) If F; and F; are not
temporally overlapping, the relative pose that is used to initialize

ICP is computed using T'; and T';.

For some pairs of fragments, ICP will succeed in aligning large por-
tions of the imaged surfaces. If after [CP alignment more than 20%
of the points in one of the fragments are in close correspondence
(distance < 3cm) to the other fragment, we add a loop closure edge
to GG to connect this pair of fragments. Loop closure edges are es-
tablished between anchor frames on the fragments. For a POI frag-
ment, the anchor frame is simply the first frame of the fragment.
For a connector fragment, the anchor frame is the frame that is tem-
porally farthest from the closest POI frame. (For most fragments,
this is either the first or the last frame.) Each loop closure edge is
associated with the relative pose produced by ICP.

The pose graph G is optimized using a standard weighted non-
linear least squares formulation. Edges that connect frames asso-
ciated with the same POI are treated as hard constraints (infinite
weight). All other edges are treated as soft constraints (unit weight
for edges that connect consecutive frames, weight 100 for loop clo-
sure edges). We use the gZo package [Kummerle et al. 2011]. The
optimization yields a rigid transform for each frame that maps it to
the global scene coordinate frame.

5.3 Integration

Finally, after we obtain the definitive pose T, for each frame k as
described above, we perform global integration of all the range im-
ages. We initialize a signed distance function (SDF) Fy(x) and a
weight function Wy (x) over a volume that encompasses the entire
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Weighting that protects local geometry

Figure 4: We adopt a weighting function that protects local geom-
etry around points of interest.

scene. For each frame &, we construct a projective SDF f,(x) for
the localized range image T, Dy, with an associated weight func-
tion wy (x). The global distance and weight functions are updated
as follows:

Wi (3) Fie (%) + wie1(%) fr+1(x)
Wi (%) + wi1(x)
Wigi(x) = Wi(x) + wr+1(x)

Fiy1(x)

where Fj(x) and W (x) are the cumulative distance and weight
functions after integrating Dy, [Curless and Levoy 1996; New-
combe et al. 2011].

During this integration process, we further protect the detailed ge-
ometry constructed around points of interest. Specifically, range
images that are not associated with a point of interest s; may still
contain range samples from surfaces around s;. As shown in Fig-
ure 4, these samples can corrupt the local geometry around s; since
their frames were not associated with s; and were not registered
to the local model around s;. To protect such local geometry, we
adopt the following weight function:
«@ Ka(||Py(x) —5j]|/h) if D ~~ s;
wi(x) = { @+ BKo(IPo(x) ~S1/1) i D s,

where K¢ is the Gaussian kernel, P, is the projection operator in-
troduced in Section 4.1, h is the bandwidth used in (2), and (c, 3)
are set to (1, 10).

6 Experiments

We use an Asus Xtion Pro Live camera, which streams VGA reso-
lution range and color images at 30Hz. This camera uses the same
PrimeSense range sensor as the Microsoft Kinect, but is somewhat
smaller and lighter. It is rated for indoor use but can be comfort-
ably operated outdoors, although not under strong sunlight. The
camera is connected to a laptop that is carried in clamshell mode in
a backpack. The operator holds the camera and a smartphone that
is wirelessly connected to the laptop and runs a remote desktop ap-
plication. The smartphone shows the color and depth input streams
and a preview of the reconstruction. The preview is generated by
Extended KinectFusion and helps to monitor the incoming data.
When Extended KinectFusion loses track, the preview implemen-
tation resets the volume and initiates registration and integration
from a clean slate.

Figure 5 illustrates our results for two indoor scenes. In order to
overcome occlusion, the operator has to move the camera along
complicated trajectories that induce nested and coupled loops. The
trajectories are shown in the figure. Figures 1 and 6 illustrate our
results for two outdoor scenes. Additional results are presented in
the supplementary video. Table 1 summarizes the scenes used in
our experiments. The table lists the length of the camera trajectory



Model Size # of Trajectory #of Datg RGB-D POI. Registra— Opt.imiza— IntF:gra— T_olal Triangle
frames length POI collection SLAM detection tion tion tion time count
Figure 1 50m>? 11,230 184m 6 6m 3h 24m Sm 40m 10m 2h Im 6h 26m 6,858,620
Figure 2 17m? 7,198 7Tm 7 4m 1h 57m 3m 18m 52m 53m 4h 7m 5,784,009
Figure 5 left 13m? 3,000 58m 6 2m 24m Im 12m 16m 40m 1h 35m 3,150,436
Figure 5 right 14m? 5,490 69m 8 3m 41m Im 14m 52m 47m 2h 38m 5,062,748
Figure 6 26m? 6,152 78m 3 3m 1h 54m 2m 16m 6m 48m 3h 9m 3,752,678
Figure 7 25m? 1,352 16m 2 Im 5m <lm 7m 43m 25m 1h 22m 9,075,458
Figure 8 top 12m? 2,703 36m 0 2m 18m Im 17m 1h 54m 21m 2h 53m 4,187,775

Table 1: Statistics for the scenes used in our experiments. Timings are reported for a workstation with an Intel i7 3.2GHz CPU, 24GB of
RAM, and an NVIDIA GeForce GTX 690 graphics card.
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Figure 5: Reconstruction of a lounge (left) and a copy room (right). For each scene, the figure shows the localized camera trajectory, a scale
marker, the density map computed during scene analysis, and the identified points of interest.

in each scene. This length is indicative of the complexity of the
trajectories in some of the scenes. For the scene in Figure 1, for
example, the camera traversed over 180 meters in a scene that is
less than 10 meters in diameter.

Figure 2 compares our approach to the state of the art. We use
the Extended KinectFusion implementation in the Point Cloud Li-
brary [Rusu and Cousins 2011; Heredia and Favier 2012]. For
the reported experiments, we made the implementation more ro-
bust and augmented it with two-pass registration (Section 5.1). For
RGB-D SLAM, we use the reference implementation of Endres et
al. [2012]. All settings for RGB-D SLAM were set to maximize
quality at the expense of computational efficiency. Note that Ex-
tended KinectFusion can run in real time, while RGB-D SLAM
and our approach involve offline optimization and have substan-
tially longer runtimes.

RN

PO fragments
Trajectory Connectors

Density Jm,
To evaluate our approach on independent benchmark data, we ran
it on the five “fr1” handheld SLAM sequences from the RGB-D
SLAM benchmark of Sturm et al. [2012]. The benchmark pro-
vides ground truth camera pose estimates obtained by a calibrated Figure 6: Outdoor cactus garden.
marker-based motion capture system. Different estimated trajec-
tories can be evaluated against the ground truth by computing the
absolute translational root mean square error (RMSE); see Sturm
et al. [2012] for details. On two of the sequences, “fr1/360” and
“fr1/floor”, the KinectFusion frame-to-model registration (which is
a component of our approach) fails due to large featureless sur-
faces and rapid camera movement. The results for the other three
sequences are given in Table 2. Our approach produces more ac-
curate camera trajectories than Extended KinectFusion or RGB-D
SLAM for all three sequences.

(motion capture) trajectory from the benchmark data to localize the
range images, followed by standard volumetric integration (right).
Our approach detects two POI in the scene and preserves geometric
detail around them, as shown in the close-ups in Figure 7. Note
that the ground truth camera pose estimates obtained by the motion
capture system have errors of around 0.3° in the estimated camera
orientation and are thus, as observed by Sturm et al., not suitable as
a benchmark for detailed scene reconstruction.

For the longest and most complex sequence, “frl/room”, our ap- . .

proach has a RMSE of 0.09m, a significant improvement over the 7 Discussion

0.23m RMSE of Extended KinectFusion and the 0.22m RMSE

of RGB-D SLAM. Figure 7 shows dense reconstructions of this There are many limitations and opportunities for future work. Some
scene obtained by our approach (left) and by using the ground truth of the most significant limitations are induced by the sensor, which



Sequence # of # of Our RGB-D EKF
frames POIL method SLAM

fr1/desk 595 1 0.026m 0.034m 0.059m

fr1/desk2 639 2 0.037m 0.061m 0.048m

frl/room 1,352 2 0.087m 0.223m 0.231m

Table 2: Three sequences from the RGB-D SLAM benchmark, and
the RMSE obtained on these sequences by our method, RGB-D
SLAM, and Extended KinectFusion.

(a) Our result

(b) Mocap trajectory + Integration

Figure 7: Results on the “frl/room” scene from the RGB-D SLAM
benchmark, with our approach on the left and the ground truth cam-
era trajectory localized by a calibrated marker-based motion cap-
ture system on the right.

cannot be operated under strong sunlight, does not provide reliable
range data for translucent or highly specular surfaces, and has a lim-
ited effective range (roughly 0.5 to 3 meters). Furthermore, the high
error magnitudes encountered even within this range limit the qual-
ity of the results that can be obtained. We expect to see more accu-
rate sensors available to the public in the future. Nevertheless, we
expect the issues encountered and the ideas introduced in our work
to remain relevant for a broad class of consumer-grade sensors, in-
cluding low-power and low-baseline sensors that may be integrated
into future mobile devices [PrimeSense 2012]. The data streamed
by such sensors will continue to suffer from high error magnitudes
for many years to come and we hope that the ideas discussed in this
paper can support scene reconstruction even with such low-fidelity
input data.

A minor limitation of our current implementation is the largely pla-
nar scene analysis pipeline for POI detection. We expect an exten-
sion to fully three-dimensional POI mapping to be straightforward.
The scenes in our current experiments already contain significant
vertical structures and our trajectories contain significant vertical
motions.

A more substantial limitation is at the heart of our approach. We as-
sume that errors in the input can be dealt with by sufficiently careful
estimation of the camera trajectory. However, this is not necessarily
true, since the range images produced by consumer-grade sensors
suffer from substantial low-frequency distortion. Even a perfect es-
timate for the camera trajectory may not be sufficient in itself for
recovering accurate surface details. Furthermore, our approach is
clearly not guaranteed to produce a perfect trajectory estimate, in
part due to the hard partitioning of the trajectory into POI segments
and connectors. The connectors may need to absorb substantial
residual distortion, leading to visible artifacts in the reconstructed
surfaces (Figure 8). We see the use of non-rigid alignment [Brown
and Rusinkiewicz 2007] as a promising approach to resolving these

Figure 8: Two illustrations of the limitations of our approach. Top:
a bm x 0.5m X 2.6m supporting stone wall. No points of interest
were detected in this scene. The reconstruction is globally consis-
tent due to loop closure detection, two-pass frame-to-model regis-
tration, and global optimization. However, some surface artifacts
remain. Bottom: the back of the copy room shown in Figure 5. The
connector regions that buffer points of interest 5, 6, and 7 absorb
residual error, which is too large to be smoothed out by the volu-
metric integration and causes visible artifacts in the reconstructed
surfaces.

issues. Adaptation of ideas commonly used in bundle adjustment
could be another approach to increasing the accuracy of the recon-
structed geometry.

An additional avenue for future work is the integration of color
data onto the reconstructed surfaces [Troccoli and Allen 2008] and
the reconstruction of detailed reflectance functions [Weyrich et al.
2009]. We plan to make most of our datasets publicly available to
support research on these and other aspects of high-fidelity scene
reconstruction.
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