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Figure 1: Given a geometric model and corresponding color images produced by a consumer-grade RGB-D camera (left), our approach
optimizes a photometrically consistent mapping of the images to the model.

Abstract

We present a global optimization approach for mapping color im-
ages onto geometric reconstructions. Range and color videos pro-
duced by consumer-grade RGB-D cameras suffer from noise and
optical distortions, which impede accurate mapping of the acquired
color data to the reconstructed geometry. Our approach addresses
these sources of error by optimizing camera poses in tandem with
non-rigid correction functions for all images. All parameters are
optimized jointly to maximize the photometric consistency of the
reconstructed mapping. We show that this optimization can be per-
formed efficiently by an alternating optimization algorithm that in-
terleaves analytical updates of the color map with decoupled pa-
rameter updates for all images. Experimental results demonstrate
that our approach substantially improves color mapping fidelity.
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1 Introduction

Consumer depth cameras are now widely available. Tens of mil-
lions of such cameras have been shipped and miniaturized ver-
sions are being developed for integration into laptops, tablets, and
smartphones. As a result, millions of people can now create high-
fidelity geometric models of real-world objects and scenes [New-
combe et al. 2011; Chen et al. 2013; Zhou and Koltun 2013; Zhou
et al. 2013].

However, capturing an object’s geometry is not sufficient for repro-
ducing its appearance. A visually faithful reconstruction must also
incorporate the apparent color of every point on the object. In this
respect the results demonstrated by recent reconstruction systems
are less impressive. To color geometric models produced using con-
sumer depth cameras, existing systems use a volumetric blending
approach that integrates color samples over a voxel grid [Izadi et al.
2011; Nießner et al. 2013; Whelan et al. 2013; Bylow et al. 2013;
Sturm et al. 2013; Endres et al. 2014]. This produces color maps
that convey the object’s general appearance, but suffer from blur-
ring, ghosting, and other visual artifacts that are apparent at close
range.

There are several factors that diminish the quality of reconstructed
color maps. First, the geometric model for which the color map is
constructed is produced from noisy data and is inaccurate. Second,
the camera poses that are used to map the input images onto the
model are estimated from the same noisy data and are likewise im-
precise. Third, the shutters of depth and color cameras in consumer
devices are not perfectly synchronized, thus for handheld scans the
color camera is not in rigid correspondence with the depth cam-
era: this further increases the misalignment of the projected images.
Fourth, color images produced by consumer RGB-D cameras suf-
fer from optical distortions that are not accounted for by the pinhole
camera model.

In this paper, we describe an approach for optimizing the mapping
of color images produced by a handheld RGB-D camera to a cor-
responding geometric reconstruction. Our approach addresses the
aforementioned difficulties in a coherent optimization framework.
To correct imprecise camera localization, we jointly optimize the
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poses of all color frames. To correct the complex distortions in-
troduced by inaccuracies in the geometric model and the optical
path, we optimize a non-rigid correction function for each image.
The camera poses and the non-rigid corrections for all images are
optimized in tandem to maximize a single joint objective: the pho-
tometric consistency of the mapping.

We describe an alternating optimization algorithm that effectively
decouples the variable updates for different images. Global coor-
dination is achieved through simple analytical updates of the color
map. As a result, despite the large number of optimized parame-
ters and the challenging nonlinear objective, our approach produces
globally optimized mappings in minutes.

We have evaluated the presented approach on a large number of
handheld scans of indoor and outdoor objects. Experimental results
demonstrate that our approach substantially increases the fidelity of
reconstructed color maps.

2 Related Work

Creating a color map for a geometric model given multiple images
of the depicted object is a classical problem in computer graphics.
A commonly used approach is to compute a color for each point on
the model by averaging the image colors at corresponding image lo-
cations. In many works, the registration between the images and the
model is assumed to be provided, by means of manually selected
point correspondences [Ofek et al. 1997; Pighin et al. 1998; Neuge-
bauer and Klein 1999; Rocchini et al. 1999; Stamos and Allen 2000;
Yamauchi et al. 2005; Franken et al. 2005], photogrammetry targets
[Baumberg 2002], or high-end imaging setups [Levoy et al. 2000].
In our case, the images can be registered to the model by the geo-
metric reconstruction pipeline, but this geometric registration is not
sufficiently precise for producing high-fidelity color maps.

A number of works explore camera pose optimization to maximize
color agreement. If registered pairs of range and color images are
given, color consistency can be optimized as part of the geomet-
ric alignment process [Johnson and Kang 1999; Pulli and Shapiro
2000; Bernardini et al. 2001; Pulli et al. 2005]. In our case, neither
the range data nor the registration between the range and color im-
ages is sufficiently precise for this approach to produce color maps
of the quality we seek. A number of researchers have investigated
optimization approaches that align features in the color images to
features in the geometric model [Lensch et al. 2001; Stamos and
Allen 2002; Corsini et al. 2009; Liu and Stamos 2012]. In our
setting, the geometric model is not sufficiently precise for these ap-
proaches to suffice. Ikeuchi et al. [2007] align color images to the
geometric model by registering the images to laser reflectance data,
which is produced as a byproduct of laser range finding. Corsini
et al. [2013] describe a graph-based pose refinement algorithm that
maximizes the mutual information between projected images. We
also perform global optimization, but our objective and optimiza-
tion approach are different and naturally accommodate non-rigid
deformation functions that correct residual misalignment for all im-
ages.

A small number of recent research efforts have considered the use
of non-rigid deformation to resolve complex misalignments due to
imprecise geometry and other factors. Aganj et al. [2009] search
for corresponding SIFT keypoints in the input images and analyti-
cally compute displacement vectors that align matched keypoints;
the displacement is then interpolated using thin-plate splines. Our
approach does not rely on keypoint extraction and matching, which
are far from perfect in practice; rather, we optimize a dense photo-
consistency term that takes full image information into account and
is naturally coupled with rigid camera localization. Gal et al. [2010]
assign each face in the geometric model to a single input image and

optimize a per-face translational shift within the image to minimize
seams. Face-to-image assignments and quantized shifts are com-
puted using combinatorial optimization. This approach does not
attempt to perform camera localization. It is also computationally
expensive: the running time of the algorithm is quite high even for
a moderate number of triangles in the model and a small number
of color images. In contrast, we show that continuous non-rigid
distortion functions for all images can be computed jointly with op-
timized camera poses using a global optimization approach that can
handle models with hundreds of thousands of triangles in minutes.
Dellepiane et al. [2012] compute optical flow between pairs of im-
ages and blend the computed flow fields. We show that distortion
functions for all images can be optimized together, by a single op-
timization procedure that minimizes a clear global objective.

In contrast to all of the above approaches, we optimize the camera
poses in tandem with the non-rigid correction functions. All pa-
rameters are computed by a coherent global optimization algorithm
that minimizes a single joint objective: the photometric consistency
of the computed mapping. Our experiments demonstrate that joint
optimization of camera poses and non-rigid distortion parameters
produces superior results to optimization of either of these compo-
nents alone.

Once the mapping of the color images onto the geometric model
is computed, a number of techniques can be used to integrate sam-
ples from different images. A common approach is to average the
samples and sophisticated averaging schemes have been developed
[Callieri et al. 2008]. Alternatively, a color assignment can be com-
puted by solving a Poisson equation [Chuang et al. 2009; Li et al.
2013] or a discrete labeling problem [Lempitsky and Ivanov 2007;
Sinha et al. 2008]. Our work is complementary to these ideas: once
a mapping of the color images to the geometry is optimized, any of
these integration techniques can be used.

3 Overview

Input. Our input is a stream of depth images and a stream of high-
resolution color images. We use an Asus Xtion Pro Live camera,
which streams VGA resolution depth images at 30 fps and SXGA
(1280x1024) color images at 10 fps. (The camera can stream VGA
resolution color images at 30 fps, but we value resolution over
frame rate and use the highest resolution color images, which are
streamed at a lower frame rate.) The images in the two streams are
time-stamped by a common clock. The shutters are not in sync, but
the time stamps can be used to match color images to the closest
depth images. The color images are captured with fixed exposure
and white balancing.

Geometric reconstruction. To create the geometric model we use
KinectFusion [Newcombe et al. 2011; Izadi et al. 2011]. This pro-
duces an initial mesh M0 along with estimated camera poses that
approximately register each depth image to the mesh. The resolu-
tion of this initial mesh is determined by the resolution of the voxel
grid used by the KinectFusion pipeline. We subdivide this mesh
multiple times to obtain the final mesh M [Peters and Reif 1997].
Each triangle is recursively subdivided within its plane, thus the
subdivision does not alter the actual geometry of the model. Let P
denote the set of vertices of M. Our goal is to compute a color for
each vertex p∈P. These colors are linearly interpolated within the
triangles of M.

Key frames. Since the camera is handheld, many of the input color
images suffer from strong motion blur. To maximize the quality of
the computed color map, our pipeline automatically selects a subset
of the input images. Specifically, we quantify the blurriness of each
image using the metric of Crete et al. [2007] and select key frames
greedily as follows. Given a set of already selected key frames, we



add the frame that has the lowest blurriness in the time segment
(t−, t+) after the last selected key frame. Parameters t− and t+
determine the upper and lower bounds on key frame density. In our
implementation, (t−, t+) = (1, 5) seconds. The set of key frames
is denoted by {Ii}. This is the set of images used in the subsequent
stages of the pipeline.

For each key frame Ii, we render the mesh M onto the image plane
of Ii using the camera pose of the closest depth image and the de-
fault intrinsic parameters of the camera. A visibility test is applied
by comparing the depth value of each vertex and the correspond-
ing value in the depth buffer produced for the rendering. This is
used to identify a set of vertices of M that are potentially visible
in key frame Ii. This set is pruned by filtering out vertices whose
projections are within distance δ from image boundaries or depth
discontinuities. (In our implementation, δ is set to 9 pixels.) The
remaining vertices are denoted by Pi ⊂ P.

Optimization. This is the heart of our approach. Given color
images {Ii} and corresponding vertex subsets Pi, we optimize a
photometric consistency objective that quantifies, for each vertex
p ∈ P, the color consistency of all corresponding image locations.
The objective and the optimization algorithm are the subject of Sec-
tions 4 and 5. For the sake of exposition, we begin in Section 4 by
treating the problem of optimizing the camera poses for all images.
We then show in Section 5 how the presented approach is extended
to optimize the camera poses in concert with non-rigid correction
functions for all images.

4 Camera Pose Optimization

In this section we present the approach in a restricted setting in
which only the camera poses are optimized. This reduces nota-
tional clutter when the objective is introduced and accelerates the
presentation of optimization strategies. The photometric consis-
tency objective is introduced in Section 4.1. Section 4.2 describes
a natural application of the Gauss-Newton method to this objective.
Section 4.3 then presents an alternating optimization algorithm.

4.1 Objective

Our input is the set of images {Ii} and the associated vertex subsets
{Pi}. For each image Ii, we want to optimize an extrinsic matrix
Ti that maps vertices in Pi from the global frame of the geometric
model M to the local frame of the image. We use homogeneous
coordinates, thus Pi ⊂ P3 and Ti is a 4× 4 matrix.

Our objective is to maximize for each point p ∈ P the agreement
of the colors of p in all images associated with p. Specifically,
consider the set of images Ip = {Ii : p ∈ Pi}. This is the set
of images associated with p. Let Γi(p,Ti) be the color at the
image coordinates of the projection of p onto Ii ∈ Ip, given an
extrinsic matrix Ti. We want to maximize the agreement within
{Γi(p,Ti)}Ii∈Ip , for each p. To this end, we introduce an aux-
iliary variable C(p), which serves as a proxy for the color of p.
For simplicity, we use greyscale images for the optimization. Thus
C(p) and Γi(p,Ti) are scalars. Let C = {C(p)} and T = {Ti}.
Our goal is to optimize the set of camera transforms T, with C
serving as auxiliary variables. We minimize the following objec-
tive:

E(C,T) =
∑
i

∑
p∈Pi

(
C(p)− Γi(p,Ti)

)2
. (1)

To perform the optimization, we need to be more specific about
how Γi(p,Ti) is computed. Γi(p,Ti) is produced by a composi-
tion of a rigid transformation, a projection, and a color evaluation,

which can be expressed as Γi(u(g(p,Ti))). Here g is the rigid
transformation:

g(p,Ti) = Tip. (2)

u is the projection onto the image plane of Ii:

u(gx, gy, gz, gw) =

(
gxfx
gz

+ cx,
gyfy
gz

+ cy

)>
, (3)

where fx and fy are the focal lengths and (cx, cy)> is the principal
point. Finally, Γi(ux, uy) is the color evaluation that returns the
bilinearly interpolated greyscale intensity for coordinates (ux, uy)
in image Ii.

Our objective can now be written as

E(C,T) =
∑
i

∑
p∈Pi

r2i,p, (4)

where ri,p is the residual

ri,p = C(p)− Γi(u(g(p,Ti))). (5)

4.2 Gauss-Newton Method

E(C,T) is a nonlinear least-squares objective and can therefore
be minimized using the Gauss-Newton method. Let x be the vec-
tor of variables that includes all the parameters of C and T. The
optimization is initialized by a parameter vector x0 = [C0,T0].
For each i, T0

i is provided by the camera pose of the closest
depth image to Ii. For each p, C0(p) is set to the average of
{Γi(p,T

0
i )}Ii∈Ip . Each iteration of the algorithm updates x as

follows:

xk+1 = xk + ∆x, (6)

where ∆x is the solution to the following linear system:

J>r Jr∆x = −J>r r. (7)

Here r = r(x) is the residual vector and Jr = Jr(x) is the Jaco-
bian of r. Both are evaluated at xk:

r = [ri,p(x)|x=xk ](i,p) , (8)

Jr = [∇ri,p(x)|x=xk ](i,p) . (9)

In each iteration, r can be computed using equation (5). The par-
tial derivatives of ri,p with respect to C and Tj |j 6=i are trivial. To
compute the partial derivatives of ri,p with respect to Ti, we lo-
cally linearize Ti around Tk

i . Specifically, we parameterize Ti by
a 6-vector ξi = (αi, βi, γi, ai, bi, ci)

> that represents an incremen-
tal transformation relative to Tk

i . Here (ai, bi, ci)
> is translation

and (αi, βi, γi)
> can be interpreted as angular velocity. Ti is thus

approximated by a linear function of ξi:

Ti ≈

 1 −γi βi ai
γi 1 −αi bi
−βi αi 1 ci

0 0 0 1

Tk
i . (10)

With this parametrization, ∆x is a vector that collates {C(p)} and
{ξi}. To compute the partial derivative of ri,p with respect to Ti,
we use equation (5) and apply the chain rule:

∇ri,p(ξi)|x=xk = − ∂

∂ξi
(Γi ◦ u ◦ g)

∣∣
x=xk (11)

= −∇Γi(u)Ju(g)Jg(ξi)|x=xk , (12)



where ∇Γi is the gradient of Γi, computed by applying a normal-
ized Scharr kernel over the greyscale image, Ju(g) is the Jacobian
of u, derived from equation (3), and Jg(ξi) is the Jacobian of g
with respect to ξi, derived from equations (2) and (10).

In each iteration, we evaluate the residual vector r and the Jacobian
Jr at xk, and solve the linear system (7) using sparse Cholesky
factorization. Although the linear system has m + 6n variables,
wherem is the number of vertices and n the number of key frames,
the matrix J>r Jr is sparse and symmetric positive definite. Thus the
linear system can be solved in a small number of hours for problems
with hundreds of thousands of vertices and dozens of key frames.
(Precise timings are provided in Section 6.) The solution ∆x is
used to update x according to equation (6). Specifically, camera
extrinsics are updated using equation (10) and mapped back into the
SE(3) group. In the next iteration, we re-parameterize Ti around
Tk+1

i and repeat.

4.3 Alternating Optimization

We now present an alternating optimization scheme for minimizing
the objective. This approach has extremely favorable scalability
characteristics. The basic idea is to alternate between optimizing C
and optimizing T. When C is optimized T is kept fixed and vice
versa. Thus in each iteration of this scheme, all variables C and T
are optimized, but this optimization is performed in two stages. In
each stage, some variables are fixed but the same global objective
is optimized. Thus the algorithm is guaranteed to converge.

When T is fixed, the nonlinear least-squares problem (4) turns into
a linear least-squares problem that has a closed form solution:

C(p) =
1

np

∑
Ii∈Ip

Γi(p,Ti), (13)

where np = |Ip| is the number of images associated with p. Thus
we simply need to compute the average intensity of the projections
of p onto the images associated with p.

When C is fixed, the objective (4) decomposes into independent
objectives for each Ti:

Ei(T) =
∑
p∈Pi

r2i,p. (14)

Each term Ei(T) involves only the six variables ξi. In each itera-
tion, we update these variables using a Gauss-Newton step that has
the general form of (7) but only 6 variables. The Gauss-Newton
update for each Ti is thus independent and can be computed in
parallel. Overall, the scheme is extremely efficient: instead of solv-
ing a linear system withm+6n variables, each iteration reduces to
solving n linear systems of 6 variables.

5 Non-Rigid Correction

We now extend the approach to incorporate a non-rigid correction
for each image that can rectify complex distortions due to imprecise
geometry and optical aberrations.

5.1 Objective

The non-rigid correction is represented as a deformation function
Fi over the image plane of Ii, for each image. We explicitly rep-
resent the deformation over a control lattice Vi and interpolate it
over the continuous domain. Let the set of control vertices in Vi be
{vi,l}. Let the correction applied by Fi to vi,l be fi,l. Thus

Fi(vi,l) = vi,l + fi,l.

The correction fi,l is simply a two-dimensional vector. The defor-
mation Fi is extended to all points u in the image plane as

Fi(u) = u +
∑
l

θl(u)fi,l. (15)

Here θl are the basis functions for bilinear interpolation. Thus for
each point u in the image plane, the correction Fi(u) is a linear
combination of corrections {Fi(vi,l)}vi,l∈Vi . Only a small num-
ber of coefficients θl(u) are non-zero at any point u. In our imple-
mentation, Vi is an orthogonal grid with 20×16 cells (and 21×17
control vertices).

Let F = {fi,l}(i,l) be the set of parameters of the non-rigid cor-
rection functions for all images. The photometric consistency ob-
jective can now be rephrased to incorporate the effect of non-rigid
corrections:

Ec(C,T,F) =
∑
i

∑
p∈Pi

r2i,p, (16)

where the residual is

ri,p = C(p)− Γi(Fi(u(g(p,Ti)))). (17)

To prevent the correction functions from drifting we add a simple
L2 regularizer on the magnitude of the offsets fi,l:

Er(F) =
∑
i

∑
l

f>i,lfi,l. (18)

Our complete objective is now

E(C,T,F) = Ec(C,T,F) + λEr(F), (19)

where λ is a coefficient that balances the strength of the two terms.
λ is related to the density of projected points u(g(p,Ti)) in the
grid cells of V, since the number of regularization term summands
grows as a function of grid vertices and the number of data term
summands grows as a function of projected mesh vertices. We use
λ = 0.1 in all our experiments.

5.2 Optimization

The key advantage of the alternating optimization algorithm is its
scalability. The objective (19) involves m + 720n variables and
a straightforward application of the Gauss-Newton method would
be extremely computationally expensive. In contrast, the alternat-
ing optimization strategy reduces to solutions of independent linear
systems with 720 variables.

As in Section 4.3, we proceed iteratively. In the kth iteration, we
first fix T and F and optimize C. This can be done in closed form
as in equation (13). We then fix C and optimize T and F. The
objective (19) decomposes into n independent objectives over the
individual images. We perform a Gauss-Newton update for each
image. The Jacobian of the regularization term is straightforward.
The non-zero entries of the Jacobian for the photometric consis-
tency term are as follows:

∇ri,p(ξi)|x=xk = −∇Γi(F)JFi(u)Ju(g)Jg(ξi)|x=xk ,

∇ri,p(fi,l)|x=xk = −θl(u)∇Γi(F)|x=xk ,

where JFi(u) is the Jacobian of Fi with respect to u:

JFi(u) = I +
∑
l

fi,l∇θl(u). (20)



(a) No optimization (b) Camera pose only (c) Non-rigid correction only (d) Complete objective

Figure 2: Effect of camera pose and non-rigid correction optimization. (a) Initial alignment, (b) result of optimizing camera poses without
non-rigid correction, (c) result of optimizing non-rigid corrections with fixed camera poses, (d) result of joint optimization of camera poses
and non-rigid corrections. Corresponding quantitative results are provided in Table 2.



Model
Residual error using the Gauss-Newton method Time per

iteration
Residual error using alternating optimization Time per

iterationInitial 10 iter. 50 iter. 200 iter. Initial 10 iter. 50 iter. 200 iter.
Figure 1 0.081 0.064 0.050 0.049 18.30s 0.081 0.068 0.050 0.049 0.64s

Figure 2, row 1 0.092 0.046 0.041 0.041 26.73s 0.092 0.054 0.042 0.041 0.66s
Figure 2, row 2 0.055 0.039 0.033 0.033 39.34s 0.055 0.040 0.033 0.032 1.02s
Figure 2, row 3 0.062 0.045 0.036 0.035 33.83s 0.062 0.048 0.036 0.035 0.79s
Figure 2, row 4 0.095 0.089 0.079 0.068 16.07s 0.095 0.090 0.081 0.072 0.59s

Table 1: Normalized residual error and average time per iteration for camera pose optimization, using the Gauss-Newton method (left) and
alternating optimization (right). Alternating optimization achieves similar accuracy but is substantially faster.

Model # of
points

# of
key frames

Initial
error

Camera pose only Non-rigid correction only Complete objective
Error Time Error Time Error Time

Figure 1 536,872 33 0.081 0.049 128s 0.064 209s 0.045 296s
Figure 2, row 1 504,963 53 0.092 0.041 132s 0.050 208s 0.037 293s
Figure 2, row 2 874,130 43 0.055 0.033 204s 0.041 334s 0.030 470s
Figure 2, row 3 489,839 50 0.062 0.035 158s 0.050 249s 0.033 355s
Figure 2, row 4 892,378 32 0.095 0.072 118s 0.080 165s 0.061 235s

Table 2: Effect of camera pose and non-rigid correction optimization. Joint optimization of camera poses and non-rigid corrections improves
on optimizing either of the two components alone.

Initialization 10 iterations 50 iterations 200 iterations

Figure 3: Progress of alternating optimization on the model shown in Figure 1. The complete objective is being optimized, including non-
rigid correction functions. The images visualize the values of the proxy variables C(p) for vertices p in the model. Some of the vertices are
shown black and do not have corresponding variables, since they were automatically masked out in all key frames due to proximity to image
boundaries or depth discontinuities. These vertices do not bias the optimization but are given a color in the final reconstructed color map, as
shown in Figure 1 and described in Section 6.

6 Results

We begin by evaluating the relative performance of the Gauss-
Newton method and the alternating optimization algorithm. This
evaluation is performed on camera pose optimization, so that the
experiment can be conducted in a reasonably short time frame (up
to about two and a half hours per model for the Gauss-Newton
method). All experiments were performed on a workstation with
an Intel i7 3.2GHz CPU and 24GB of RAM. The results are re-
ported in Table 1. The CHOLMOD package was used for solving
linear systems. The two algorithms achieve similar gains on the
objective, but the alternating optimization algorithm is much faster.
Alternating optimization for 200 iterations is used in all subsequent
experiments.

Next we evaluate the contribution of camera pose optimization and
non-rigid correction. Qualitative results are shown in Figure 2 and
quantitative results are reported in Table 2. Joint optimization of
camera poses and non-rigid correction functions produces superior
results both qualitatively and quantitatively. The quantitative im-

provement is modest, but it corresponds to an adjustment in visual
quality that is apparent at close range, as shown in Figure 2. Figure
3 visualizes the progress of the optimization.

Figures 1, 2, and 4 demonstrate a variety of models reconstructed
with our approach. After the camera poses and the non-rigid correc-
tion functions are optimized, we compute a final color assignment
for each vertex p using a weighted average of the corresponding
colors in images Ip. The corresponding color in image Ii is given
weight µ cos(θ)/d2, where θ is the angle between the normal and
the view vector at p for the camera that corresponds to Ii, d is the
distance from p to the camera, and µ is a smooth matting function
that assigns lower weight to image pixels that are close to image
boundaries and depth discontinuities. Other integration approaches
could be used [Lempitsky and Ivanov 2007; Callieri et al. 2008;
Chuang et al. 2009].

Figure 4 also shows reference reconstructions produced by the
widely used Point Cloud Library (PCL) [Rusu and Cousins 2011].
The geometric models and the set of key frames used for color map-



Our approach Volumetric blending

Figure 4: A variety of additional objects reconstructed by the presented approach. For reference, the color maps produced for the same input
by the widely used volumetric blending approach as implemented in the state-of-the-art Point Cloud Library are shown on the right.



ping are the same as in the results produced by our approach. The
PCL color maps are computed using volumetric blending, the ap-
proach most commonly employed in recent RGB-D reconstruction
systems [Izadi et al. 2011; Nießner et al. 2013; Whelan et al. 2013;
Bylow et al. 2013; Sturm et al. 2013; Endres et al. 2014]. De-
spite tuning the settings for maximal accuracy (5123 voxel grid in
a 0.8m3 volume) and only using key frame images that minimize
blurriness, volumetric blending fails to resolve misalignments in the
data. The presented optimization approach substantially increases
the visual quality of the color maps produced for these models.

The presented optimization approach successfully handles non-
Lambertian objects. The fountain shown in Figure 1 is strongly
non-Lambertian: specular reflection from the ceramic tiles can be
clearly seen in the supplementary video. The laminated product
boxes in the top row of Figure 2 are highly specular, as are the rain
boots in the second row of Figure 4 and the metallic mailbox in the
bottom row. To further test the sensitivity of the optimization to
non-Lambertian reflectance in the scene, we scanned a highly spec-
ular ceramic pitcher from the closest range allowed by the depth
camera. The result is shown in Figure 5. The optimization is re-
silient to non-Lambertian reflectance because it is strongly regular-
ized: the camera pose is represented by only 6 parameters, and they
are affected by the entire corresponding image. Even for highly
specular objects such as the ceramic pitcher, specular highlights oc-
cupy only a small part of the image. Most of the image is reliable,
and this dominates the optimization.

photograph reconstruction

Figure 5: A highly specular ceramic pitcher.

To evaluate the sensitivity of the approach to error in the input
camera trajectory and geometric reconstruction, we applied con-
trolled perturbation to the camera trajectory produced by KinectFu-
sion for the fountain model. Specifically, for each camera pose, we
produce an incremental transformation represented by a 6-vector
ξi = (αi, βi, γi, ai, bi, ci)

> and apply it as in equation (10). The
translational and rotational components of ξi are sampled from
zero-mean Gaussian distributions with standard deviations σt and
σω , respectively. We then integrate a new geometric model based
on the perturbed camera trajectory, and use this model and tra-
jectory as input to our technique. Figure 6 shows the results for
(σt = 0.005, σω = 0.005) and (σt = 0.015, σω = 0.015), where
σt is measured in meters.

To evaluate the sensitivity of the approach to the accuracy of the in-
put geometric model, we progressively simplified the fountain and
applied the approach to these simplified models. Figure 7 shows
the resulting color maps.

7 Discussion

We presented a global optimization approach to the mapping of
color images produced by consumer-grade RGB-D cameras onto

the geometric models reconstructed from the corresponding range
data. Our approach optimizes the camera poses for all color im-
ages along with non-rigid correction functions that help resolve
misalignments that arise due to inaccurate geometry, camera local-
ization, and optical distortions. Experimental results demonstrate
that the presented approach improves the quality of reconstructed
color maps.

The presented work was focused on optimizing the mapping of the
color images to the reconstructed geometry. Once a consistent map-
ping of the images to the geometric model is computed, the images
can be integrated on the model to produce a color map. The inte-
gration algorithm used in our implementation, described in Section
6, is based on weighted averaging. This is highly simplistic and
leads to visual artifacts when view-dependent effects such as spec-
ular highlights or moving shadows are present during scanning. A
more sophisticated integration algorithm can ameliorate such ar-
tifacts [Lempitsky and Ivanov 2007; Callieri et al. 2008; Chuang
et al. 2009].

Our approach does not reason about intrinsic reflectance properties
and does not produce material representations that facilitate accu-
rate simulation of the object’s appearance under different illumi-
nation conditions. The introduction of active illumination into the
scene during scanning can significantly enhance the capabilities of
the reconstruction system and enable the reconstruction of true sur-
face reflectance and the creation of object models that can be ac-
curately relit [Levoy et al. 2000; Bernardini et al. 2001; Weyrich
et al. 2009]. It would be interesting to use our optimization ap-
proach in conjunction with active lighting to create high-fidelity re-
lightable object models using consumer-grade RGB-D data. An
intriguing alternative is to estimate surface reflectance without the
use of active illumination [Troccoli and Allen 2008; Laffont et al.
2013; Shan et al. 2013; Chen and Koltun 2013]. Our approach can
assist the application of such techniques as well.
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