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Abstract

Segmenting meshes into natural regions is useful for model under-
standing and many practical applications. In this paper, we present
a novel, automatic algorithm for segmenting meshes into meaning-
ful pieces. Our approach is a clustering-based top-down hierarchi-
cal segmentation algorithm. We extend recent work on feature sen-
sitive isotropic remeshing to generate a mesh hierarchy especially
suitable for segmentation of large models with regions at multiple
scales. Using integral invariants for estimation of local characteris-
tics, our method is robust and efficient. Moreover, statistical quanti-
ties can be incorporated, allowing our approach to segment regions
with different geometric characteristics or textures.

1 Introduction

Triangular meshes are now widely used in computer graphics. They
are easy to acquire and widely available. The demands for tech-
niques of analysis, processing, storage, transmission and rendering
of triangular meshes are ever increasing. However, due to their ir-
regular connectivity and lack of high-level semantic structures, the
automatic analysis of meshes is challenging. Cutting mesh models
into meaningful pieces is one important step towards surface under-
standing, and has a wide range of applications.

Segmentation is a crucial step in reverse engineering of CAD
models: it divides the mesh into regions, each of which is fitted
using a single analytical surface [Várady et al. 1997]. In computer
graphics, various applications use segmentation as a preprocessing
step. Mesh simplification can be improved by constraining contrac-
tion to take place within segmented regions, leading to improved
quality of simplified models [Zuckerberger et al. 2002]. Li et al. [Li
et al. 2001] demonstrated the use of well chosen segmentation in
improving the performance of collision detection. Segmentation is
also useful in morphing [Shlafman et al. 2002; Zuckerberger et al.
2002] and skeleton-driven animation [Katz and Tal 2003].

Ideas from cognitive science give a useful basis for model seg-
mentation. Hoffmann and Richards [Hoffmann and Richards 1984]
proposed the so-called minimal rule: the human visual system per-
ceives region boundaries along negative minima of principal cur-
vature, or concave creases. Later, Hoffmann and Singh [Hoffmann
and Singh 1997] pointed out that the depth of the concavity directly
affects the salience of region boundaries. Thus, concave feature re-
gions, as well as other features, are crucial for segmentation [Katz
and Tal 2003; Liu and Zhang 2004]. In addition, we wish to take
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geometric texture information into account—texture segmentation
is widely used in image processing and should also be useful here.

Recently, the regularized isophotic metric was proposed
in [Pottmann et al. 2004]; this distance function depends both on
position and normal information. Going further, using the idea of
an image manifold from image processing [Kimmel et al. 2000],
each point x on the surface can be mapped to a corresponding point
x f = (x,wn) in R6, where n(x) is the unit normal vector corre-
sponding to x and w is a user specified constant controlling feature
sensitivity [Lai et al. 2006]. This maps the surface Φ ⊂ R3 to the
corresponding 2-manifold Φ f ⊂R6. Then, the feature sensitive dis-
tance for a curve c may be defined to be the Euclidean length of the
image curve c f . A method for feature sensitive remeshing was pro-
posed in [Lai et al. 2006] using isotropic remeshing of Φ f . The
characteristics of the meshes produced were studied in that paper,
leading to the suggestion that they could be a useful tool for robust
feature extraction.

Our segmentation approach here is a clustering-based segmenta-
tion algorithm, like other state-of-the-art mesh segmentation meth-
ods such as [Katz and Tal 2003]. It uses locally defined integral
invariants [Manay et al. 2004] to estimate local properties of the
surface, which is much more robust than simply computing dihedral
angles or estimating discrete curvatures. Feature sensitive remesh-
ing [Lai et al. 2006] is a useful tool for efficiently computing inte-
gral invariants for segmentation. Only normal information is used,
avoiding direct estimation of higher-order differential quantities.

We use feature sensitive remeshing to produce a hierarchy of
meshes, allowing us to efficiently construct a hierarchical segmen-
tation. In this way, our method performs segmentation of models
using the most appropriate level in the mesh hierarchy. It can thus
can handle larger models than previous k-means clustering based
methods, and it can also segment coarse and fine details of com-
plicated model using the same hierarchy. Moreover, by using sta-
tistical measures of integral invariants, we can achieve segmenta-
tion based on large-scale variation of local surface characteristics
or variation in geometric texture. In this way, our method can sep-
arate regions without clear boundaries.

In Section 2, recent work on surface segmentation is discussed.
We then outline our segmentation algorithm in Section 3. The two
key steps, hierarchical feature sensitive remeshing, and hierarchi-
cal k-means clustering based segmentation, are detailed in Sec-
tions 4 and 5 respectively. Experimental results are presented in
Section 6, while conclusions and discussions for future work are
given in Section 7.

2 Related Work

Image segmentation is a key step in image analysis and understand-
ing, and has received much attention. Its counterpart for 3D sur-
faces has been studied only much more recently.

Based on different aims, segmentation methods can generally be
classified into two types: patch-type segmentation and part-type
segmentation [Shamir 2004]. The former methods mostly aim to
producing patches that satisfy certain geometric properties, often
being similarity of geometric properties. For example, Sander et
al. [Sander et al. 2003] segment a mesh model into a set of charts,
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Figure 1: Steps of our segmentation algorithm

each of which is almost planar; such segmentation is suitable for
parameterization as done in multi-chart geometry images. Trying
to produce planar patches is too restrictive, and later improvements
by Juliu et al. [Julius et al. 2005] try to segment models into quasi-
developable patches. Part-type segmentation on the other hand tries
to segment models into meaningful pieces, usually based on signif-
icant features. Our method is of the latter type, and we will mainly
consider this type of segmentation.

Segmentation methods generally fall into two classes: region
based, and boundary based. Segmentation methods rely on estimat-
ing local properties. Boundary based approaches use special values
of these local properties as candidate locations for boundaries, and
regions are deduced from the located boundaries. Region based
methods, however, look for areas having similar properties, which
define the regions, and the boundaries are deduced from them.

Various operators have been used for estimating properties.
Some methods use discrete curvature estimators (e.g. [Mangan and
Whitaker 1999; Page et al. 2003; Srinark and Kambhamettu 2003;
Zhang et al. 2002]). Other work [Katz and Tal 2003; Liu and Zhang
2004; Shlafman et al. 2002] uses a combination of geodesic and an-
gular distances for similarity measurement, angular distances being
a function of dihedral angle between adjacent triangles. Gelfand
and Guibas [Gelfand and Guibas 2004] proposed a rather different
shape descriptor, using slippage analysis, which is more suitable for
segmenting mechanical components than computer graphics mod-
els.

Some segmentation methods are boundary based. For example,
Zhang et al. [Zhang et al. 2002] give an algorithm which explic-
itly locates boundaries using discrete curvatures. Generally, such
approaches depend on accurate discovery of boundary loops.

However, many segmentation methods are region based. Man-
gan and Whitaker [Mangan and Whitaker 1999] extend the bobsled-
ding watershed algorithm to triangular meshes. Page et al. [Page
et al. 2003] use an alternative hill climbing algorithm for water-
shed segmentation. They compute a directional height map and use
impeded climbing up negative principal curvature hills. Srinark et
al. [Srinark and Kambhamettu 2003] classify local surface regions
using curvature estimates, and then use region growing to segment
the model, starting from certain seeds. Though fast, this approach
does not seem to handle noise well, and can also result in over-
segmentation. Gelfand and Guibas [Gelfand and Guibas 2004] use
local slippage analysis and a multi-pass region growing approach
based on slippage signatures to separate different regions. This ap-
proach also requires good quality models.

Other region-based approaches use iterative clustering as a tool
(as we also do here). Use of global optimization allows such ap-
proaches to be more robust to variations in local properties caused
by noise, for example. Shlafman et al. [Shlafman et al. 2002] use k-
means clustering to provide a meaningful segmentation. However,
the regions produced have jagged boundaries. This work was later

improved in [Katz and Tal 2003], using hierarchical segmentation,
fuzzy clustering and minimal boundary cuts to produce smoother
boundaries. (In contrast, we use feature sensitive smoothing which,
like the use of geometric snakes, tends to produce smoothed bound-
aries snapped to features). Spectral clustering was suggested by
Liu et al. [Liu and Zhang 2004]; the authors claim it gives supe-
rior results for clean mesh models. However, these methods de-
pend on dihedral angles whose computation is sensitive to noise.
Geodesic and angular distances between all pairs of triangles must
be precomputed and stored for efficiency; this limits the size of in-
put mesh for which this is practical, even if done in a hierarchical
manner. Another drawback is that the results depend on mesh con-
nectivity. Cohen-Steiner et al. [Cohen-Steiner et al. 2004] use a
similar Lloyd’s-type clustering algorithm to that used in this work;
however, their goal is surface approximation.

Unsupervised clustering techniques like the mean shift method
can also be applied to mesh segmentation. Shamir et al. [Shamir
et al. 2004] extend mean shift analysis to mesh models using local
parameterization. Yamauchi et al. [Yamauchi et al. 2005] apply
mean shift clustering to surface normals, and then use a method
similar to that in [Sander et al. 2003] to compute the segmentation,
based on the clustered normals. The number of clusters is computed
during the segmentation process; however, the method presented
in [Yamauchi et al. 2005] is likely to segment a model into more
pieces than the desired number of meaningful parts.

Other approaches to segmentation also exist. Li et al. [Li et al.
2001] use edge contraction based skeletonization and space sweep-
ing for mesh decomposition. Their method provides visually ap-
pealing results; however, it tends to capture large-scale shapes
rather than features, making some decompositions impossible. Mi-
tani and Suzuki [Mitani and Suzuki 2004] proposed a technique for
making paper models from meshes. This can be considered as in-
volving a special segmentation scheme that guarantees each region
is developable. Wu and Levine [Wu and Levin 1997] proposed a
method that simulates the distribution of electrical charges on the
surface. Boundaries of regions are locations with minimal charge.
The aim is to capture sharp concave features which are usually per-
ceived as natural boundaries. Unlike most other methods, this ap-
proach does not depend on differential quantity estimation and is
thus more stable. However, assumptions are needed about the na-
ture of the input object, which should generally have an even dis-
tribution of concave feature regions for boundaries, and the mesh
should also be closed. Katz et al. [2005] propose a segmentation al-
gorithm based on feature points and core extraction. Pose-invariant
results are reported in this paper. However, an expensive optimiza-
tion method is used to find feature points, which limits the complex-
ity of models that can be efficiently handled after simplification.

Other work has considered interactive mesh segmentation. As
well as extracting features automatically, the approach proposed
in [Lee et al. 2004] also gives the user tools to to close and optimize
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boundary loops separating different parts of the object. Funkhouser
et al. [2004] present a modeling system based on searching for and
stitching parts from a database. An intuitive interactive segmenta-
tion tool is given to find optimal cuts guided by user-drawn strokes,
formulated as a constrained least-cost path problem.

Our approach is automatic and region-based. As in the method
in [Katz and Tal 2003], we can produce a hierarchy of segmenta-
tion, of particular use in certain applications. We use hierarchical
feature sensitive isotropic remeshing to efficiently and robustly seg-
ment large models at several levels. Integral invariants and statis-
tical quantities are used as local properties in a k-means clustering
approach. These provide more robustness than dihedral angles, are
insensitive to small fluctuations in surfaces, and are also capable of
segmentation using certain types of geometric textures.

3 Algorithm Overview

Given an input model represented as a triangular mesh, and a few
user specified parameters, our method produces a set of disjoint,
constituent regions, whose union is identical to the input mesh.

For some input models, preprocessing may be desirable. Though
our algorithm can be applied to manifold models with or without
holes, we do assume that any necessary topological correction has
been carried out to remove unwanted gaps, tiny handles or other
deficiencies ( topological noise). For very large models (more than
106 triangles, using a current desktop PC), it may be desirable to ap-
ply mesh simplification [Garland and Heckbert 1997; Hoppe 1996]
in order to obtain results in a reasonable time (a few minutes).

We now map the mesh from R3 to its counterpart in R6, as de-
scribed earlier. This is done vertex by vertex while keeping the
connectivity unaltered. As part of this process, the normal at each
vertex needs to be estimated. For models that are not too noisy,
normals can be reliably estimated using 1-ring neighbors. For nois-
ier models, however, improved results can be achieved by esti-
mating normals using local planar or quadratic surface fitting to
a neighborhood—see [Lai et al. 2006] for further details.

Next, the new mesh is subjected to hierarchical feature sensi-
tive remeshing, as explained in detail in Section 4. This process
generates a hierarchy of feature sensitive (FS) meshes, of increas-
ing resolution with successive levels of detail, and with clear corre-
spondences between adjacent levels. This is accomplished by first
constructing the coarsest level of remeshing; for each finer level,
every triangle in the coarser level is subdivided into 4 triangles and
newly inserted vertices are repositioned in nearby locations to op-
timize isotropic sampling in R6. The hierarchical output is con-
ceptually similar to an Gaussian image pyramid. In the first step
of segmentation, the coarsest level of remeshing is used, reducing
the computational complexity and ensuring stability with respect
to small scale fluctuations. As hierarchical segmentation proceeds,
each area to be segmented at lower levels contains fewer triangles.
When an area contains too few triangles on the current mesh so
that the corresponding finer mesh contains fewer than a certain pre-
specified number of triangles, we move to a finer mesh.

A k-means clustering algorithm is used to segment a given area
(at the top level, the remeshed surface, or part of it at lower levels).
This clusters triangles to form regions as detailed in Section 5. The
number of clusters, k, can be specified by the user, or can derived
by optimization as in [Katz and Tal 2003].

A metric measuring distances between triangles is needed to per-
form clustering. We use a definition incorporating geodesic dis-
tance, integral invariants related to averaged normal curvature, and
statistical measures of these invariants characterizing local proper-
ties such as geometric texture. Given a user specified number of
regions to be generated at the current level, several initial regions
are selected, which are then improved iteratively. This segmen-
tation process is performed at several levels (if desired), giving a

Input: a mesh model; certain user-specified parameters.
Output: a set of disjoint, contiguous regions representing

meaningful parts of the input model.

1. Preprocessing (optional);

2. Compute hierarchical feature sensitive remeshing.

3. Perform hierarchical segmentation with k-means clustering
and a new distance metric.

4. Map the result back to the original model (optional).

5. Perform feature sensitive boundary smoothing.

Figure 2: Algorithm Overview

hierarchical segmentation.
The segmentation results on the FS mesh can be mapped to the

original input mesh by projection, in a similar way to the approach
used in [Katz and Tal 2003]. Alternatively, the segmented FS mesh
itself, which has better properties, may be used in downstream ap-
plications.

If the initial region boundaries are too jagged, they can be im-
proved by feature sensitive smoothing as in [Lai et al. 2006] or by
use of geometric snakes [Lee and Lee 2002].

Our algorithm is summarised in Figure 2.

4 Hierarchical Feature Sensitive
Remeshing

Clustering-based segmentation algorithms need to compute dis-
tances between pairs of triangles on the mesh. In practice, distances
between most pairs of triangles will be required. These pairwise
distances need to be randomly accessed during k-means clustering
and should be kept in main memory. They may be found using Di-
jkstra’s shortest-path algorithm in O(N2 logN) time, where N is the
number of triangles; O(N2) storage is required. This is expensive
for large N, and previous methods (e.g. [Katz and Tal 2003]) have
used a simplified mesh as a means to provide a segmentation for
large models. Simplification ideally would done in such a way as
to ensure consistency of the segmentation with the original model.

Hierarchical segmentation was first introduced by Katz et
al. [Katz and Tal 2003]. It is able to represent a decomposition
of a model at different levels, mimicking the way people think. To
achieve hierarchical segmentation, they simply segment each region
at each level of detail into further regions, recursively. However, at
the higher levels, the simplified triangulation count is low for each
region, and inadequate detail may be present due to mesh simplifi-
cation. This has an impact on the correctness and accuracy of the
segmentation of the original mesh.

Our alternative approach is suited to large meshes: we use multi-
resolution, hierarchical, feature sensitive remeshing to reduce the
size of the computational problem, while avoiding the loss of sig-
nificant detail in the reduced size meshes. In particular, the input
model is remeshed into a hierarchy of models with different reso-
lutions with clear correspondences between adjacent levels in the
hierarchy. The coarsest remeshing is used for the initial segmenta-
tion. In earlier stages of hierarchical segmentation, details of mod-
els are usually of little use, and the global shape at a coarse reso-
lution is important. Later, areas of the model are segmented using
more detailed meshes. At finer levels of detail, only single already-
segmented areas of the mesh need by processed at a given time, not
the whole mesh. By using hierarchical remeshing in conjunction

19



with hierarchical segmentation, our method is capable of handling
larger models, and segmenting them into more levels.

Thus, instead of using mesh simplification, we use feature sen-
sitive, isotropic, remeshing [Lai et al. 2006]. Typically, we might
make from one to three levels of such FS meshes, each with 1/4
the number of triangles of the previous level. An FS mesh in gen-
eral has almost equilateral, equally sized triangles in R6. How-
ever, it also has the desirable property that triangles are elongated
along sharp features. This makes it possible to efficiently represent
models. Moreover, a topological disk on an FS mesh is a good ap-
proximation to a geodesic disk in R6. Let α represent the mapping
between Φ and Φ f . It has been shown in [Lai et al. 2006] that the
affine first derivative mapping Dα−1 maps the unit circle k f in R6,
centered at some point x f on Φ f , to an ellipse k in R3, in the cor-
responding tangent plane of Φ at the point x. This mapping distorts
the local shape. The principal distortions, corresponding to princi-
pal curvatures, are the extremal distortions. Thus, the distances of
the vertices of the ellipse to its center are the corresponding princi-
pal distortions 1/λi, i = 1,2, which satisfy

λ 2
i = 1−w2K +2w2Hκi = 1+w2κ2

i , (1)

where κi are the two principal curvatures, respectively [Lai et al.
2006]. Thus the principal distortions, which can be estimated as an
integral quantity, are closely related to the local surface curvatures.
We explain how we use them for segmentation in Section 5.

FS remeshing can be computed by extending an isotropic
remeshing algorithm (e.g. [Alliez et al. 2003; Surazhsky et al.
2003; Witkin and Heckbert 1994]) which works inR3 to the feature
sensitive metric in R6. We use the method in [Lai et al. 2006]. It
uses the iterative method in [Witkin and Heckbert 1994] to optimize
the sampling, and to further improve the results, geodesic distances
computed by the method in [Surazhsky et al. 2005], rather than Eu-
clidean distances, are used in an energy function which is a sum of
spring energies designed to cause vertices to repel one another.

As geodesic distances are used, an FS mesh contains almost
equilateral triangles with almost identical size in terms of the fea-
ture sensitive metric on the input model. Given such a mesh, if
each triangle is split into four smaller ones, by inserting a vertex at
some appropriate point near the mid-point of each edge, the result-
ing refined model is still nearly isotropic in this sense. The refined
model can be computed as follows. Insert a vertex at the mid-point
of each edge of the coarse level mesh, and project these newly in-
serted vertices onto the input model in R3. (The projection can be
done in R3 or R6. However, it appears to be more robust to do
the projection in R3). The connectivity and positions of the ver-
tices from the coarser level mesh are kept unaltered. This ensures
that vertices do not move globally, and the correspondence between
the coarse and finer levels is simply given by the above one-to-four
mapping. The new vertices are repositioned using spring energy
optimization. The neighborhood used for computing spring energy
functions can be easily found from the topological neighbors based
on subdivision. The optimization carried out is similar to the one
used for remeshing at the coarsest level. Armijo rule [Kelley 1999]
step-size control can be incorporated to make the result more stable.
The initial positions are usually quite close to the required solution,
and it takes just a few iterations to achieve acceptable remeshing
results.

As noted earlier, it is usually sufficient to remesh models at from
one to three levels, depending on detail in the input model and de-
gree of segmentation required. Fig. 3 shows the Armadillo model
(originally with 345,944 triangles) remeshed with 11,756 (left) and
47,024 triangles (right).

(a) (b)

Figure 3: FS meshes of the Armadillo model at coarser and finer
resolutions

5 Hierarchical Segmentation

Use of remeshed models makes segmentation tractable, and esti-
mation of geometric properties efficient. The triangles in the model
as clustered into k meaningful regions using k-means clustering,
which assigns triangles to clusters according to distances from an
iteratively updated representative triangle for each cluster. Sec-
tion 5.1 gives our basic approach to clustering-based hierarchical
segmentation, Section 5.2 discusses the key issue of distance com-
putation, and Section 5.3 briefly considers how to ensure that each
region has a smooth boundary.

5.1 Hierarchical Segmentation Approach

Our hierarchical segmentation approach is similar to those in [Katz
and Tal 2003] and [Shlafman et al. 2002]. The main differences lie
in the distance computation (see Section 5.2) and the use of mul-
tiresolution remeshing. The number of clusters, k, can be specified
by the user, or can derived automatically by optimization as in [Katz
and Tal 2003].

The algorithm proceeds from coarse to fine segmentation of the
input mesh. Segmentation is performed on the appropriate FS mesh
and mapped back to the original mesh if desired. Initially, the entire
lowest resolution FS level mesh is segmented into regions. Subse-
quently, if further segmentation is required, the segmentation pro-
cess is applied to the individual regions identified at the previous
level of segmentation. A finer FS mesh is used if the region has a
manageable size in this mesh, i.e. contains fewer than a certain pre-
specified maximum number (say 10,000) of triangles Otherwise,
the coarser FS mesh is still used.

In order to segment a target (the whole object or a region) into
smaller regions, k-means clustering is used as follows:

1. Precompute distances between triangles. The distance be-
tween each pair of triangles is computed using a metric which
combines geodesic, curvature-related and geometric texture-
based information.

2. Pick seeds. Seed triangles may be chosen by the user. Oth-
erwise a seed triangle is randomly selected for the first clus-
ter, and seeds are found for the other clusters one by one, by
choosing the triangle that has the largest average distance to
all other seeds found so far.

3. Assign triangles to the nearest cluster. Each triangle is as-
signed to the cluster to whose representative is closest.
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4. Update the representative of each cluster. The representa-
tive r is updated to be the one minimizing

∑
f∈Region(r)

D( f ,r);

here D( f ,r) is the distance between triangles f and r.

Steps 3 to 4 are iterated; in practice, just a few iterations suffice
to converge to adequate results.

Note that the precomputed pairwise distances can be used again
for further levels of segmentation if the same resolution of FS mesh
is used, leading to efficiency.

5.2 Distance Computation

Distance computation is the key step in any k-means clustering al-
gorithm. It affects the clustering outcome and a suitable metric
must be carefully chosen dependent on the problem. For clustering-
based segmentation, geodesic distance and angular distance have
been used [Katz and Tal 2003; Shlafman et al. 2002; Liu and Zhang
2004].

Geodesic distance favors segmentation of equal sized regions,
whereas angular distance tries to force region boundaries to lie
where surface direction changes quickly, e.g. at sharp edges. This
works well for clean models, producing regions typically separated
by (ideally deep) valleys. However, for real, noisy, scanned mod-
els, angular distances are less useful. Noisy meshes can contain
triangles with relatively large dihedral angles between them. In the
extreme, a small spike on a relatively smooth surface may be seg-
mented as a region if its triangles are far from all its neighbors in
angular distance. Moreover, the angular distance approach usually
applies a nonlinear mapping (e.g. the cosine function) to the dihe-
dral angles, in order to reduce this distance in flatter regions. The
overall effect for a specific portion of surface depends on whether it
is represented by a few large triangles, or a larger number of smaller
triangles.

Like previous authors, we first define the distance between an
adjacent pair of triangles. The distance between any pair of trian-
gles on the mesh can then be computed by following the shortest
path on the dual graph of the mesh, using Dijkstra’s algorithm.

We define the distance function differently to previous authors,
in terms of integral and statistical information about local features.
In addition to using geodesic distance Dgeod like previous work,
we add two further terms, namely the curvature distance Dcurv, de-
rived from the mapping distortion of R6 geodesic disks, and the
texture distance Dtexture that measures changes in geometric texture
or other statistical surface properties. The distance between an ad-
jacent pair of triangles fi and f j is overall defined as

D( fi, f j) = c1 ·Dgeod( fi, f j)/D̄geod (2)

+ c2 ·Dcurv( fi, f j)/D̄curv

+ (1− c1− c2) ·Dtexture( fi, f j)/D̄texture

where the averages D̄∗ are over all pairs of adjacent triangles. We
typically use 0.1≤ c1 ≤ 0.2 and 0.7≤ c2 ≤ 0.9.

The geodesic distance Dgeod( fi, f j) between two adjacent trian-
gles is defined as the sum of the distances from the barycenters of
two triangles to the center of the edge that is shared by the two
triangles.

To efficiently compute the other two distance terms, we compute
the mapping distortion at each vertex of the FS mesh. For a vertex
v, we use an r-ring of neighbours (typically r = 1 to 3) as an ap-
proximation to a R6 geodesic disk. The freedom to choose r differ-
ently provides flexibility to selectively ignore small scale features,
allowing a tradeoff between accuracy and robustness. The princi-
pal distortions λmin and λmax, and corresponding directions dmin
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Figure 4: Distortion estimation and sampling pattern for geometric
statistics

and dmax, can be approximated using the geodesic disk. We find
the shortest and longest distance from v to any point on the bound-
ary of this neighborhood using a fast geodesic distance computa-
tion [Surazhsky et al. 2005]. Let these distances be ∆min and ∆max
respectively, with corresponding vectors (projected on the tangent
plane of v) dmin and dmax. We can estimate the mapping distortion
as λmin = ∆min/l and λmax = ∆max/l, where l is the radius of the
geodesic disk in the feature sensitive metric. We use dmin and its
orthogonal direction in the tangent plane of v as approximate prin-
cipal directions

We now compute Dcurv in Equation 2. For an adjacent triangle
pair fi and f j , we consider the mapping distortion λe in the direction
orthogonal to their common edge e, as follows. Taking the two
vertices v1,v2 opposite to e in these triangles, we use their principal
distortions to estimate the mapping distortion λe in the direction ne
orthogonal to e:

λe =
1
2 ∑

i=1,2
(λ i

mindi
min +λ i

maxdi
max) ·ne. (3)

(see Fig. 4(a)). Dcurv can then be defined as

Dcurv( fi, f j) = ηG(
1
λe
−1). (4)

where η is a coefficient controlling the relative importance of con-
vex and concave regions. Cognitive theory emphasises the impor-
tance of segmentation at concave regions, so η should be a small
number (e.g. 0.1≤ η ≤ 0.2) for convex regions and 1.0 for concave
ones. G is a sigmoidal nonlinear function used to reduce the effect
of low responses. Its use is very similar to application of the cosine
function to dihedral angles when computing angular distances. We
use

G(x) = 1− cos(
π
c

min(x,c)) (5)

where c is a threshold; c = 0.5 works well in practice. All the
examples presented in this paper use this setting for c.

Most previous methods for mesh segmentation do not take into
account differences in geometric textures when performing seg-
mentation. While computation of local similarity is possible, it
tends to be expensive, and sensitive to noise. We therefore com-
pute statistical properties of integral invariants (e.g. λmin) for use
as descriptors of local surface properties. Another suitable integral
quantity, the radius ratio ρ , is given by

ρ =
√

Area in R3/Area in R6. (6)

Small ρ corresponds to at least one of the principal curvatures being
large. It can also be seen from Equation 1 that λmin has a close
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(a) (b) (c)

Figure 5: Segmentation by texture

relationship to the local average curvature. To use these descriptors
for local shapes, given an edge e between two adjacent triangles fi
and f j, we sample a specific neighborhood on either side of the edge
(see Fig. 4(b)). The average and standard deviation of λmin and ρ
are computed and placed in a vector V (the standard deviation is
multiplied by a weight to control relative importance of averages
and standard deviations), and Dtexture is thus defined as:

Dtexture = ‖Vi−V j‖2. (7)

By balancing the weights of constituent parts of the distance
function, our method can produce varying results, as desired by
the user. Fig. 5(b) shows an example where Dtexture has been em-
phasised to segment a textured object into three regions; in this case
we used c1 = c2 = 0.1. The result in Fig. 5(a) was produced with a
weight for Dtexture of 0.

Fig. 5(c) shows another example that segments the flat letters
SPM from a surface covered with a grooved geometric texture. Be-
cause a large neighborhood has been used for geometric texture
statistics, the locations of the boundaries are not very accurate and
there also exist some rounding effects at corners due to the use of
smoothing. A separate boundary optimization process is likely to
be necessary in practice to further improve the results.

5.3 Patch Boundary Smoothing

Though our results tend to produce more robust boundaries near
sharp features than previous methods, by utilising integral quanti-
ties rather than dihedral angles or discrete differential quantities,
in some cases, the segmentation results are still jagged. We use
feature sensitive smoothing [Lai et al. 2006] to improve this. The
basic idea is to optimize discretized spline-in-tension energy in
the feature sensitive metric. Segmentation boundaries tend to pass
through feature regions, and such smoothing has the ability to snap
the boundary to the features. It bears some similarity to geometric
snakes [Lee and Lee 2002], but is much simpler to implement and
avoids local parameterization which includes unavoidable mapping
distortions.

Region boundary smoothing needs to be done carefully. As there
are branching vertices on boundaries where three or more regions
meet, we cannot move each boundary loop independently. Such
vertices are detected, and the boundary is split into segments where
any such vertices exist. Each segment is smoothed separately while
keeping the locations of the branching vertices fixed (the positions
of the latter could also be optimized too for further improvement).

The remeshing results can be mapped back to the original in-
put model if desired using a projection method similar to the one
in [Katz and Tal 2003].

Boundary smoothing should be done after projection.

6 Experimental Results

The weight w used for mapping intoR6 should be chosen according
to the scale of the input mesh [Lai et al. 2006] In the experiments
reported later, we scaled the models to fit into a bounding box of
size 1. The choice of w is not critical, and we typically used 0.05≤
w≤ 0.1.

Fig. 1 illustrates the main steps of our algorithm using the
‘bunny’ model with 25,000 triangles, remeshed using two levels
of FS mesh with 17,336 and 4,334 triangles, respectively. Two
levels of segmentation are shown, using the coarser and finer FS
mesh respectively.

Fig. 6 shows segmentation of various objects with our method.
The results are better for models with sharp features, especially con-
cave features separating different parts (e.g. Figs. 6(a-d)). The FS
meshes contain elongated triangles which tend to follow features,
so that the computed region boundaries do not need smoothing. For
models with fewer features, or whose features do not form closed
loops, slightly more jagged boundaries result, and the segmenta-
tion is not as robust. For example, in Fig. 6(f), the front leg is
cut higher than others, which in some sense is also reasonable, be-
cause the cut boundary takes into account certain creases on the
model. Our method is robust in the presence of small fluctuations,
as illustrated by Fig. 6(j). By varying the neighborhood size when
computing integral invariants, the scale of features being considered
can be altered. This is a useful property when small scale, sharper
features coincide with large scale, smoother features. The various
scanned models segmented in this Figure show the insensitivity of
our method to noise.

Fig. 5 shows an example of segmentation by texture. The size of
the statistical neighborhood used affects the texture captured. Our
method can efficiently separate certain kinds of geometric textures,
but due to the use of simple statistical measures, limitations exist;
we wish to extend it to handle more complex kinds of geometric
texture.

Fig. 7 shows two examples of segmenting models into a larger
number of levels. The original ‘eagle’ model contains 33,072 tri-
angles, and we used a simplified version of the ‘Lucy’ model con-
taining 237,278 triangles. Segmentation was done to three levels.
Using hierarchical FS meshes, detail can be retained while keep-
ing the computation time and main memory manageable. Using the
finest FS mesh, even the hand of ‘Lucy’ and the foot of the ‘eagle’
can be reliably segmented.

We tested our method on a Pentium IV 2.4GHz computer with
1GB RAM. Remeshing a model with 200K triangles to about 10K
triangles takes under a minute. Segmentation time is directly re-
lated to the size of the input FS mesh. For models with 4K trian-
gles, local property estimation takes 0.1s, pairwise distance com-
putation 15.4s, and clustering 1.3s. For models with 11K triangles,
the times are 0.2s, 134.8s, and 7.9s respectively. The time is dom-
inated by computing pairwise distances. Note that smaller models
require significantly less time to compute. By using hierarchical
FS meshes, the time for pairwise distance computation is greatly
reduced.

Compared to previous work, our approach is capable of han-
dling complicated models with high efficiency, due to the use of
feature sensitive hierarchical remeshing. Generally, our method is
relatively insensitive to choices of the parameters in the algorithm.
However, by using an appropriate neighborhood size in the compu-
tation of integral invariants, we believe more robust results might
be achieved. Note that the ability to separate certain kinds of ge-
ometric texture means our method is particularly useful for certain
types of application.

22



(a) 6,620 triangles
3 patches

(b) 9,984  triangles
6 patches

(c)  59,008  triangles
4 patches

(d) 654,666  triangles
6 patches

(e) 76,438  triangles
6 patches

(f) 96,972 triangles
6 patches

(g) 35,245  triangles
3 patches

(h)  151,558  triangles
8  patches

(i) 151,558  triangles
8 patches

(j) 345,944  triangles
9 patches

Figure 6: Various segmentation results.

7 Conclusions

In this paper, a top-down hierarchical mesh surface segmentation
algorithm was presented. As it is based on isotropic remeshing, it
is insensitive to the input triangulation of the mesh. By using in-
tegral and statistical properties, problems due to noise are avoided,
and textures can also be captured and used to drive the segmenta-
tion. Hierarchical FS remeshing not only provides an efficient tool
for computation, but can handle larger models with more accuracy
than earlier methods. Use of finer models leads to better follow-
ing of features, and better region boundaries. Improved results are
obtained when more levels of segmentation are used.

We hope to address remaining limitations in the future. The
algorithm is dependent on the initial seed points used, and better
approaches for their placement needs to be explored. Choosing
the number of regions automatically and reliably also needs fur-
ther work. Our statistical approach needs extension to handle more
complicated textures.
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VÁRADY, T., MARTIN, R. R., AND COX, J. 1997. Reverse engi-
neering of geometric models - an introduction. Computer Aided
Design 29, 4, 255–268.

WITKIN, A., AND HECKBERT, P. 1994. Using particles to sample
and control implicit surfaces. In Proceedings of SIGGRAPH,
269–277.

WU, K., AND LEVIN, M. D. 1997. 3D part segmentation using
simulated electrical charge distributions. IEEE Transaction on
Pattern Analysis and Machine Intelligence 19, 11, 1223–1235.

YAMAUCHI, H., LEE, S., LEE, Y., AND OHTAKE, Y. 2005. Fea-
ture sensitive mesh segmentation with mean shift. In Proceed-
ings of Shape Modeling International, 236–243.

ZHANG, Y., PAIK, J., KOSCHAN, A., ABIDI, M. A., AND GOR-
SICH, D. 2002. A simple and efficient algorithm for part decom-
position of 3-D triangulated models based on curvature analysis.
In Proceedings of Intl. Conf. on Image Processing, III, 273–276.

ZUCKERBERGER, E., TAL, A., AND SHLAFMAN, S. 2002. Poly-
hedral surface decomposition with applications. Computers &
Graphics 26, 5, 733–743.

25




