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Abstract
We present a method for repairing topological errors on solid modelsiffiottm of small surface handles, which often arise
from surface reconstruction algorithms. We utilize a skeleton reprasemtiat offers a new mechanism for identifying and

measuring handles. Our method presents two unigue advantagesrevieup approaches. First, handle removal is guaranteed

not to introduce invalid geometry or additional handles. Second, by wsingdaptive grid structure, our method is capable of
processing huge models efficiently at high resolutions.
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Topology Repair of Solid Models Using Skeletons

I. INTRODUCTION introducing additional ones via skeleton modification
and topology-preserving morphological operations.

With the advance of data acquisition techniques, we have2) Whereas previous volumetric methods rely on a uniform
withessed a boom of high resolution 3D data in recent years. grid structure, our method operates on an adaptive octree
Although many surface reconstruction methods are capdble o  grid and is capable of processing huge models at very
generating water-tight surfaces from these data, thetmegul high resolutions (e.g., 409%in minutes.
models may still exhibit topological errors in the form of
small handles, such as those shown on the left of Figure 1.
These high-frequency topological features may unnedgssar
increase the complexity of the model and make it unsuitable syeletons
for subsequent processing tasks such as mesh simplification
mesh parameterization, and physical computation. Skeletons are compact, medial representations that Hescri
Ifae shape and connectivity of a 3D object [1]. In contrast

Our goal is to remove small handles on the surface of a SO[O skeletonization methods based on voronoi diagrams [2],

mod_e . S0 that a low-genus model can be prepareq for furtlgf and distance transforms [4], [5], iteratithinning excels
applications. To be able to process large models with complaS an efficient. easv-to-impl . .
. y-to-implement technique for genagatin

errors, which are typical in today’s surface reconstructio . 1
. . ! . topology-preserving skeletons of volumetric images (see a
problems, we particularly desire the following properties

excellent survey in 2D by [6] and a 3D introduction by [7]).

. Discriminative: The method should be able to differenGiven a solid represented as a set of 3D grid points, each
tiate between big and small handles. thinning iteration removes points in the outmost layer & th

« Robust: Removal of existing handles should not introS€t- The key of topology-preservation lies in identifysigiple
duce invalid geometry or additional handles. points[8] whose removal would not alter the topology of the

« Efficient: The method should handle huge models at higiflid- Unfortunately, existing thinning methods rely higaen
resolutions within reasonable time and memory. the use of a uniform grid because it is convenient to identify

simple points on such a grid, which limits these methods
Unfortunately, to the best of our knowledge, none of th® relatively low resolutions that are often insufficientr fo
current topology repair methods satisfy all of our requiregsapturing the topology of large models.
ments. In particular, it is difficult for mesh-based or exigt
volumetric methods to guarantee that removing a handle i
does not introduce a new handle. Furthermore, the time afd TOPology-controlied surface reconstruction

space consumption of traditional methods are typicall;hhig].his class of methods [9]-[12] is designed to reconstruct

for processing large modelg, either due_ to operatlon_s tqg‘é-surfaces from volumetric data with a known topology
require the full mesh resolution or the reliance on a umforl@pe Starting with an initial solid with the correct suréac

volumetric grid. topology, these methods grow (as opposed to thin) the solid
In this paper we introduce a new, volumetric approach &1 @ topology-preserving manner. While such methods have
topology repair that meets all of the three requirements. Opeen effective in reconstructing topological sphericatical
method thins a 3D volumetric model to a discrete skeletogyrfaces from MRI data, application to other topologies is
where the task of detecting handles on the model is reduddfficult as these methods requieepriori knowledge of the

to detecting cycles in a graph defined by the skeleton. Usifigsired topology as well as the geometry of the initial solid
topology-preserving morphological operations, the medifi
skeleton with cycles removed grows back into the modg]
with the corresponding handles removed. Both thinning a

growing are performed on an adaptive grid structure fGfe first class of methods for repairing the topology of agive
efficient processing of large models. In addition, our méthqy rtace performs surgeries directly on the polygonal mesh.
allows selective removal of small handles by computing anglpresentative work includes the method of Fisethal. [13],
utilizing a thickness measure on the skeleton. which inflates a reconstructed cortical surface into a spher

Contributions We present a robust and efficient solution foRnd removes handles by identifying and deleting overlappin
topology repair. Our method consists of conceptually sempifiangles on the inflated sphere. Using the concept-diulls,

steps, and possesses two advantages over existing teesmidel-Sana and Varshney [14] achieve controlled simplifigatio
of CAD models by identifying small tunnels and surface

1) Unlike previous mesh-based or volumetric approachexncavities as regions not accessible to a sphere of user-
our method is guaranteed to remove handles withospecified radius rolling on the surface. Also in a controlled

II. RELATED WORKS

Mesh-based topology repair



Fig. 1. Topology repair on a spider-web model: the originalige75 model reconstructed from point sets with many small atangled handles (left),
topology repair removes all erroneous handles except fol theajor web holes (right).

manner, Guskov and Wood [15] employs a surface growimgw handles. However, both methods involve complex graph
technique that identifies and removes small handles coeipletgeneration and analysis that are restricted to uniformsgrid
contained in a mesh neighborhood of a given size. In particular, the construction of the Reeb graph in [19] is
based on axes-aligned sweeping, while handle removal using
Mesh-based methods have the advantage that topolqﬁg graph in [20] requires non-trivial connectivity anasyto

changes only involve local modification of the geometr)(dentify “hidden” handles within each graph node. In costra

Howeye_r, there are tWO. typical drawbacks. First, th(_e removgur skeleton representation of the solid is simple enough to
of existing handles directly on the mesh may mtrodut(:f

. ; ) . . ompute on an adaptive grid and allows for easy identificatio

!n\{alld geome_try in the form of sglf—mtgrsecnons. Sgc;on f surface handles of different sizes.

it is computationally expensive to identify handles dihgct

on a large mesh, for example, by surface inflation [13], bgecently, a multi-resolution solution was proposed by Szym

computing and intersecting-prisms of triangles [14], or by czak and Vanderhyde [21], which applied topology-presgyvi

exploring a surface neighborhood that can be potentiatfyela carving operations to extract iso-surfaces with the ddsire

for identifying long and thin handles [15]. genus. This method, however, provides no direct means for
controlling the size of the handles to be removed. In addljtio
the removal operation is limited to filling tunnel-like hdes,

D. Volumetric topology repair and hence may result in modifying a much larger volume than
necessary. In comparison, our handle removal is guided by an

The second class of methods, to which our method belongscurate measure of handle sizes, and allows for both tunnel

removes surface handles by modifying a volume representatfilling and ring-cutting (see the removal of the two handles i

of the input model. In a simple approach, Nooruddin and Tufiigure 6 (e)).

[16] applied opening and closing operations on the volume

to remove small surface handles. However, these global mor-

phological operations may create additional handles iasare

away from the existing ones. In a more targeted approach, ti§avoid introducing invalid geometry (e.g., self-intesens)
method of Woodet. al. [17] detects each surface handle as g5 the result of topology repair, we represent an input model
cycle in the Reeb graph of the iso-surface extracted usieg s an implicit volume. The surface of the model, represented
Marching Cubes method [18], and performs handle removgd the iso-surface on the volume, partitions the volume into
by filling a disk-like volume inside the shortest geodesigpo ihe object (e.g., interior) and théackground(e.g., exterior).
corresponding to each cycle. Still, the main problem Wity remove surface handles, our method involves three cencep

this hybrid approach, as commented on by the authors,t&”y simple steps, as illustrated in Figure 2:
the possible introduction of new handles due to the loop-

filling operation. In addition, the removal of each handle 1) Thin the object into s&keletonthat preserves the topol-
requires re-building of the Reeb graph on a uniform grid,  ogy of the object (b).

which can be time-consuming for a large number of handles.

The detection of shortest geodesic loops on big handles ca?) Removecycles in the skeleton by computing the span-
also be expensive. ning tree of the graph defined by the skeleton (c).

Ill. M ETHOD OVERVIEW

Our method is most closely related to the graph-based apz) Grow the modified skeleton to form a new object that
proach of Shattuck and Leahy [19] and Hah al. [20]. preserves the topology of the skeleton (d).

Both methods encode the topology of the solid (instead of

the surface) as a graph, and remove handles by breakintuitively, a cycle in the skeleton corresponds to a riikg-|
cycles in the graph. Using topology-preserving morphalalyi handle on the original surface, and removing the skeletotecy
operations, handle removals are guaranteed not to inteodinas the effect of “cutting” the ring at the location where the



T\ 1 example, the darkened points, edges and faces in each grid of
ﬁ Q[— —:[) Figure 2 form a cellular complex in 2D.
= > To represent a cellular complex on a volumetric grid, we need
> | = ;L——[ to be able to tag each grid element (e.g., point, edge, fade an
: ] = cell) that belongs to the complex. Note that merely storing
an (—,b s signs at grid points, as in traditional volume represeoieti
TTTTTTT NENEENEE is not sufficient: the edge connecting two points that bellang
a cellular complex may not, itself, be part of that complese(s
(a) (b) highlighted region in Figure 2 (c)). Even the more advanced
__r- ”T . [_Lﬁﬁ[ T\ representation [22] restricts tagging to just points angeed
) LI
>[‘ Q B. Representation
: o~ an
] %— We begin with an octree structure to support efficient preces
‘ e N oy ing of large models at high grid resolutions. We additionalll
L“"‘[_ :ﬂﬁ—l—/ associate eacminimal grid element of the octree with-a/—
©) (d) sign. Here, a minimal element is the one that does not contain

Fio 2 2D ilustration of hand | using skeletors: Ehe original any smaller elements of the same dimension (e.g., a minimal
9. 2. llustration of handle removal using skeletong: e original . : H
object (darkened points, edges and faces) and the iscesu(émlid lines). edge contains no Sma_”e{ e_dges ?n the grid). For convenience
(b): The skeleton of the object. (c): The modified skeletonsisimg of a We shall drop the prefix “minimal” hereafter. We call the new

spanning tree of (b) (removed edges are highlighted). (di iéw object yolume representation dextended Signed Octrg&SO0).
grown from the modified skeleton (c), resulting in the removiahandles.

To facilitate thinning, both object and background must as-

sume the form of a cellular complex. Tlject Vin an ESO
cycle is cut (see Figure 2 (c,d)). In our method, removing is defined as the set of all positive elementssinNote that
one skeleton cycle is guaranteed to cut exactly one surfagst every ESO yields an object that is a cellular complex: a
handle without introducing additional handles (unlike mes positive edge containing a negative point violates our iprev
based [13]-[15] or previous volumetric [16], [17] handlegusly stated definition that an edge in a cellular complextmus
removal methods). Furthermore, we can associate the skelegontain two points of the complex. As a result, we further
with a thickness function, which allows the user to conth@ t require that, in avalid ESO grid, each positive element must
size of handles to be removed and allows each ring to be @ghtain only positive elements of lower dimensions.

at its thinnest location. ) ) ) )
Unlike the object, the set of all negative elements on a valid

The above steps can be applied to both the object and &0 isnot a cellular complex. To this end, we consider the
background. When applied to the background, a cycle in tagal of a valid ESO gridG, denoted a5, which consists of
background skeleton corresponds to a tunnel-like handle Bints, edges, faces and cells topologically dual to théscel
the original surface, and removing a skeleton cycle resnltsfgces edges and points @ In addition, each element in
“filling” of the tunnel. Like cutting, filling is guaranteedat @ js given the sign of its dual element @. Geometrically,

to introduce additional handles, and tunnels can be sebfti noints inG are located at the centroids of their corresponding
filled based on their sizes. cells on the primal grids.X A 2D illustration of a portion of
ESO grid and its dual are shown in Figure 3 (a,b). As such,
we define thébackgroundV as the set of negative elements in
the dual gridé (shown as dimmed elements in Figure 3 (b)).

Before presenting the main algorithms, we first introduce a#nCc€ each negative element of a valid ESO is only shared
adaptive volume representation on which the algorithms wiy negative elements of higher dimensions, by duality, yever
be performed. negative element i contains only negative elements of lower

dimensions. Thereford/ is also a cellular complex.

IV. VOLUME REPRESENTATION

Finally, we note that symbol§, G, V andV all refer to a
same volume representation. In particular, any changdseto t

Our volume representation is motivated by thinning, the- pr@PiectV involve flipping the signs of some grid elements in

cedure that we will use to compute skeletons (see detaillf Primal gridG, hence affecting the signs in the dual grid

discussion in the next section). Our thinning algorithmrepe® @nd the composition of the backgrou(d In addition, we

ates on a 3zellular complexwhich consists of points (0-D), Note thatG =G andV =V.
edges (1-D), faces (2-D) and cells (3-D). In particular,reac _ , _
&for completeness, the outside of the root node of the primakeds

edge connects two po_lnts, each face is enclosed by a NG Qesented as a cell element@with infinite size, whose dual i is a
edges, and each cell is enclosed by an envelop of faces. pait at infinity.

A. Motivation
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— Fig. 4. Thinning using simple removals. Each simple removali¢atéd by
V an arrow) removes a simple elemenand its witness. Thinning terminates
L e (far right) when no more simple elements can be found.
(@) (b)

A located halfway between the point and cell centroid. A post-
Fig. 3. (a) A primal ESO grid5, (b) The dual gridG, (c) The composite

grid G constructed by overlaying with G and the iso-surface (solid lines). In prO(_:essmg_ ste_p IS .then appll_ed to smooth these temporary
(a,b), positive grid elements are darkened and negative atsraee dimmed. VErtices using iterative averaging [25].

Iso-surface extraction can be implemented as tree trdgesea
the ESO grid. We utilize the recursive procedures proposed
in [24], which visits each grid element together with leaf
cells sharing the element in one octree traversal. Usingethe
procedures, step (1) is performed in one traversal of all gri
points, and step (2) is performed in another traversal of all
grid points, edges and faces. Details of the procedures €an b
found in [24].

C. Operations

1) Constructing ESO:A valid ESO grid can be easily con-
verted from a traditional octree grid, where signs are state
grid points, by retaining existing signs while assigningitioe
signs to edges, faces and cells that contain only positiirggo
The initial octree grid can be obtained either directly fram
volume image (e.g., MRI data) or from a polygonal mesh using

scan-conversion routines. In this paper, we use the Polglen V. HANDLE REMOVAL
software [23], which is capable of producing a water-tight
solid model from arbitrary polygonal soups. Given an input model represented as an ESO @jdour

method removes handles on the iso-surfac® of three steps:

2) Extre_lcting Iso-surfaceTo construct the_ iso-surf'c_lce of @MYhinning, skeleton cycle removal, and growing. Performing
ESO gridG, we extend the Dual Contouring algorithm [24]0q6 steps on the objeétresults in cutting ring-like handles,

which was designed for octrees with only signs at grid Qomtv?/hile performing the same steps on the backgrounesults
In particular, we consider a composite grid, denotedGas ;, filing tunnel-like handles.

that overlaysG with its dual G, as shown in Figure 3 (c).
Each point inG corresponds to an element@as well as its We first describe how each step is performed on the object
dual element inG. Recall that Dual Contouring proceeds by, although the same algorithms are equally applied to the
first creating one vertex for each grid cell that is non-empfjackgroundv. We next show that these steps result in robust
(i.e., containing grid points with different signs), faled removal of existing handles without introducing additibna
by creating one polygon for each non-empty grid edge. Isbandles. Finally, we discuss efficient implementationshef t
surface extraction o proceeds similarly in two steps: algorithms on the octree.

1) Create one vertex for each pair of positive point
and anegativecell that contains the point (such pairA. Algorithms
corresponds to a non-empty cell @).

2) For each pair of apositve ND elemento and a 1_) Thinni_ng: The §keleton of the object is obtained tiyn-_
negative (N + 1)-D elementd that containso (such Ning, which iteratively removes elements from the obj_ect
pair corresponds to a non-empty edged) create one bqundary. In order to preserve the topology of the object,
polygon connecting vertices created for each pair of tRiNNing is restricted to simple elements:

point contained bys and a cell containing. Definition 1: An N-D elemento in a cellular complex?” is

While Dual Contouring guarantees to produce a crack-free is;%a”ed simplewith respect to/” if o IS contamgd in exactly
. . : : one (N+1)-D elementd of ¥'. In particular,d is called the
surface, applying the above algorithm in a valid ESO further.
; . . witnessof o.

ensures a manifold output (see proof in Appendix A). To
reproduce geometry details, each vertex created in the fifdteach step of thinning, we remove a simple elentegether
step for a point-cell pair is located at the celepresentative with its witness from the object. We call the removal of such
vertex The representative vertex of a non-empty octree cellpair asimple removal Thinning using simple removals is
is obtained during ESO construction either from scalaresluillustrated in Figure 4, where a simple edge and its witnass f
at grid points or by sampling polygonal geometry (providedre removed first, followed by a sequence of simple removals,
by PolyMender [23]). If a representative vertex does nostexieach deleting a simple point and its withess edge. Thinning
(e.g., in a newly created non-empty cell after topology ®pa stops when no more simple elements can be found (e.g., a

the vertex associated with the point-cell pair is tempdyrarisingle point is not a simple element based on Definition 1).



2) Skeleton cycle removalThe skeleton generated by thin-
ning may consist of points, edges and faces. §etbe the
skeleton ofV. We consider theskeleton graphwhose edges
areisolatededges (i.e., edges with no incident faces)&n
denoted ads,, and whose nodes are connected component
in the remainderS, \ Is,. Note that when the skeletoS,
contains only points and edges, the skeleton grajs isself.
Observe in the 2D example of Figure 2 (b) that each cycle ir
the skeleton graph lies centered in a ring-like handl® of

Ideally, we would like to identify small handles and to “cut”
open a handle ””9 at its thinnest Iocatl_on. To this end, V\L—?g. 5. (a): The original objedt. (b): The skeletors, with thickness values
shall associate a thickness value at each isolated skedety®) (red for thin and blue for thick) and the dual elements of gatieg seta¢
which measures the cross-section area of the object atdbat e(black cross-section curves) at each skeleton exige

(discussed next). Given the thickness-weighted skeletaphg

we compute the complement of theaximunspanning tree (or

spanning forrest i€[S,] > 1) of the skeleton graph, and denotgy[¢] in the dual gridG contain only points, edges and faces.
E as those edges in this complement whose thickness vajg the generating sat/[e] forms a solid slice of the object
falls below a user-specified threshotd RemovingE from v its dualW/[e] forms a cross-section surface \éfthat “cuts
the graph only cuts those cycles whose minimum thickneggross” the isolated edge Figure 5 (b) shows a 2D example,

is smaller thane, and the cuts (i.e.F) take place at the where the dual of each generating set forms a cross-section

thinnest portion of each cycle (see Figure 2 (c)). Accorlying curve.

the modified skeletor®, is computed as§, = S/ \ E.

a) Generating setsTo explain the thickness measure, we firs, he th|cknes§ at an isolated edge Fienoted aswl[e], IS
therefore defined as the area of this cross-section surface

inroduce thegenerating set\N[(_a], of an isolated ed_gg in the W(e]. The construction d¥V[e] in equation 1 gives a recursive
skeletonS,. Formally,W|e] €V is defined as the minimum set . .
evaluation ofwe]:

so thatV \W]¢| is a cellular complex, and thinning \ W[e]
yields Sy \ {e}. Intuitively, W[e] is a solid “slice” of the object,
such that removing the edgdrom the skeleton is the same as wiel =Alg+ > w[s[d]] 2
removing the slic&V|e] from the object and applying thinning. 3EPe
Note that generating sets are related to stable manifolds in
a flow complex [26]. While the latter relies on a smoothhere Ale] denotes the area of the dual face @fin the
Euclidean distance function, the former is defined by itegat dual grid G and w[s[d]] evaluates to zero i§[d] is not an
thinning on a discrete grid. edge. To computeA[e], we triangulate the dual face o

. using the midpoint oe when the face is not planar. Figure 5
Based on the thinning process that redu¢ds S,, we present joonetrates the thickness measure on a skeleton computed
a recursive construction for the generating sets: from a 2D object. Observe that]e] adapts well to object

W(o] = {o}U U (W[5] UW[s[8]]) 1) thickness at various locations.

3eP)
=Flel 3) Growing: The final step “grows” the modified skeleton

where o € V is any N-D element,P[g] € V is the set of g, back into a new object. Instead of reversing the thinning
all (N+1)-D elements containing’, ands[d] is the element process, which is a global operation, we take a differerallo
removed together witd in a simple removal (i.e., a simpleapproach. LeE be the edges removed from the original skele-
element of whichd is the witness, or the witness 8) when ton S,, i.e.,E = S/ \'S,. We simply subtractthe generating
thinningV to S;. sets associated with edges Enfrom the original object.

To show that equation 1 meets our definition of a generatirj[g]1e new object is thus computed ¥5=V \ Uece W(e]-

set, we first observe that\W/[o] is a cellular complex for any
o. This is because any element\incontaining an element in . . . T
y d applied to either the objed and the backgroun¥, with

W/[ao] belongs toW][o]. In addition, for an isolated edge all . : oo -
elements inW[e] but e are paired in simple removals. Hencéhe effe_ct of elthelcuttlng the ring-like handles <_)ﬁ|||ng _th_e
tunnel-like handles. We illustrate results of cutting ariéhfi

V\WI[e] can be thinned t&, \ {e} using the same sequence

of simple removals, except those\Wi[e], that reducé/ to S;. ;Jhsmg a S|mplg Zt'hdg.?f torutst|hn F|r§];u|r;76.vip?cn‘tlcaltly,_ we let
Finally, the construction contains only necessary elemantl e\l/Jst(re]r fpeufi/h_wo |ﬂ::‘ren reﬁ 0. de.f.'rz CE. r(';,?S
henceW([e is minimal. on at are thinner tham, creating a modified objedt’,

and next fill tunnels oV’ that are narrower thaa. Observe

b) Measuring handles:Observe from equation 1 that thein Figure 6 that due to the use of our thickness measure, each
dimensions of elements in the generating ¥&g] are no cutting and filling always takes place at the thinnest larati
smaller than that o€ (i.e., 1). Accordingly, its dual elementsof a ring or the narrowest location of a tunnel.

4) Cutting and filling handles:The above three steps can be



which preserves the homotopy type of a 3-manifold. Let
Sy be the skeleton o¥ after simple removals, we have

XS] =XV, clS/]=cV], c[S/]=cV] (§)

2) Skeleton cycle removal: By computing the spanning tree
of the graph ofS,, the modified skeletoly, preserves
the connectivity ofS, while removing as many isolated
edges as the cycles removed from the graph:

XIS/ =xIS]+m, cls/]=c[S/], c[F]=cS/] (7)
3) Growing: By definition of generating sets, thinning

Fig. 6. Removing handles on a 2-holed torus: (a) The origibjga, (b,c) the new objectv’ yields the skeletor§,. Combining
cutting the top ring, (d,e) filling in the bottom tunnel. Eddrckness on the equation 6 and 7, we have

skeletons are shown from red (small) to blue (big). Black sphat the ends o -

of the skeleton in (d) are topologically the same point in thaldyrid G that X[V’] = X[V] +m, C[V/] = c[V], c[V/] = C[V]. (8)

is dual to the outside cell of the primal gri@.

C. Implementation
B. Robustness of handle removal

1) Thinning: Thinning of the objectV is performed on an
Let M be the iso-surface on the input ESO grid, aiibe ESO grid in an iterative manner. During each iteration, we
the iso-surface on the modified ESO grid after performingake two octree traversals. In the first traversal, we magkyev
thinning, skeleton cycle removal, and growing. Here we shoppsitive point, edge and face that is simple by Definition 1.
thatM" has exactlym fewer handles thaM, wherem is the | the second traversal, we visit each marked elenseand,
number of cycles removed from the skeleton graph. if o is still simple at the time of visit, invert the sign of both

Using Euler's formula, the number of handles on a closéd and its witness. The two traversals simulate the peeling of

manifold iso-surface is computed by its genugM]: e]ements on the outmost Iayer‘qﬁf T_hinning terminates if no
simple elements are found in the first octree traversal. in ou

g[M] = c[M] — x[M]/2 (3) implementation, we use the recursive procedures detailed i

where ¢ and x are the number of connected componen{gd'] for efficient traversing of octree grid elements.

and the Euler characteristic. The Euler characteristic 8Da Note that thinning of the backgroundcan still be performed
cellular complex?” is defined as the alternating sum using octree traversals on the primal gi@&l based on the
_ following observation: the dual of aN-D negative elemend,
X7 = kol = ka[V ]+ ke[ —ka[ V], denoted a® in G, is simple with respect t¥ if & contains
wherek;[7] enumerates the number of points, edges, faces agxfctly one(N —1)-D negative element in G.
cellsiny fori=0,1,2,3 [27] (surfaceM can be considered

. X 2) Handle measurementiVe compute the thickness measure
as a special cellular complex with no cell elements).

wle] for each isolated skeleton edgeduring thinning by
The robustness of our method is built upon the following twslightly modifying the two octree traversals describedwaho
equalities that relate the topology bf to that of the object Note that a positive face may be the witness of more than one
V and the backgrounW (see proof in Appendix A): simple edge. To obtain a minimal thickness measure, in the
oM = dV]+dV]-1 first octree traversal, we associate a fdcwith the minimal
— (4) wie] of all simple edgese that f contains. In the second
XM] 2xIV]=2x\V] traversal, we invert the signs of a simple edgend its witness
The key observation from equation 3 and equation 4 is thfél’tCef only if WH. equals the minimal value stqrgd &tand
) . we update the thickness measure on the remaining edges of
the number of handles on the iso-surfadedependsntirely . .
on the Euler characteristic and connected components of Hang equation 2.
objectV and background, that is: 3) Growing: Growing involves only local modifications of
— — — the original object using the generating sets. To consthet
gM] =clV]+cV]-1—x[V] =c[V]+c]V]-1-x[V] (5) generating sets using equation 1, we maintain pointers that
i ) , track the simple elements from their witnesses during ihignn
To confirm our hypothesis tha[M'] = g[M] —m, wherem 10 that growing typically takes negligible time due to the

is the number of cycles removed from the skele'_ton_ graph, wp, o proportion of the handles relative to the entire vadum
only need to show that the three-step topology rejpaireases

x[V] (or x[V]) by m while preserving both c|V] and c[V]
(without loss of generality, each step is demonstrate/ pn VI. RESULTS

1) Thinning: A simple removal is in fact equivalentto@ln We first perform handle removal on a synthetic tree model
ementary simplicial collapsm algebraic topology [28], with genus 18 in Figure 7. Observe that the weighting of
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Fig. 7. (a) A tree model with genus 18. (b) The topologicallpaieed model with genus 0 using cutting threshelg 0.01 and filling thresholc& = 0.04.
(c) Closeup views of the ringg4(,r2) and tunnels iy, hy), where the top row shows the original surface with the madlikeleton, and the bottom row
shows the modified surface.

Fig. 8. Topology repair of the Asian Dragon model at octreetligd. The input model contains several handles where the fooiches the head (b),
resulted from geometric repair of the original, self-ineating polygonal model by PolyMender [23]. Close-up lookshathandles site before and after repair
are shown in (c) top and bottom, where the pictures on the aghtviewed from inside the dragon head.

Before After

Fig. 9. Topology repair of the Stanford Buddha model at octiegth 10 (left), showing a genus-6 and a genus-0 result,l@@rhm David model repaired
at octree depth 12 (right), showing closeup views of the aut flled handles.

skeleton edges using our thickness measure correctlyifiéent Figure 1 shows how our method differentiates handles of
the thinnest portion of each ring-like handle to be cut aral tlvarious sizes and removes complex handles in a robust manner
narrowest portion of each tunnel-like handle to be filled. Imhe spider-web model shown on the left is reconstructed from
addition, handle removals result in only local modificationa noisy point cloud and contains 75 handles, many of which
of the volume, and the geometry away from the modificaticare small. Entangling rings and tunnels are shown in theselos
sites are preserved. up views. By performing filling with an appropriate threstol



Model Octreel Octree |PolyMenderl Genus| ¢ 5 Genug Cut Fill Contour Total Memory | Output
Depth| Leaf Cells| Time (sec)| Before After | Time (sec) Time (sec) Time (sec) Time (sec) Usage (MB) Triangles

Spider Web 7 63799 6.8 75 0.0 | 0.003 17 0 2.5 0.4 29 6 65710
Tree 7 181945 2.2 18 0.01 | 0.04 0 35 59 1.6 11.0 16 134364
Knotty Mug 8 437802 1.9 2 0.01 | 0.01 0 6.7 12.0 3.2 21.9 38 378004
Buddha 10 3989252 49.5 11 0.001| 0.001 6 62.3 130.1 29.5 221.9 336 3434164
Asian Dragonj] 11 | 13978434 264.1 17 ]0.0005| 0.0005/ O 218.7 427.3 103.2 749.2 1173 11987648
David (2mm)| 12 | 20749723 330.9 10 [0.0005| 0.0005] 4 325.9 638.0 157.7 1121.6 1743 17815146

ABLE T

PERFORMANCE RESULTS ON PROCESSING VARIOUS MODELS ON A CONSER LEVEL PCwWITH 3.0GHz CPUAND 2GB MEMORY. TIMING EXCLUDES
I/O DURING CONTOURING

all handles but the 17 main “holes” of the spider-web are
removed, and no additional handles are created.

We demonstrate our method on large scanned models in Figure
8 and 9. The Happy Buddha, Asian Dragon and Michelan-
gelo’s David (reconstructed at 2mm resolution) are prasess
respectively at octree depth 10, 11 and 12, equivalent tada gr
of size 1024, 2048 and 4096. To the best of our knowledge,
topology repair at the latter two resolutions have not been
reported before. Note in particular that the original Asian
Dragon mesh from the Stanford 3D Scanning Repository
contains a self-intersection where the horn penetratestig
head. Mesh repair using PolyMender results in a number of
topological handles at that location (see Figure 8 (b)). Our
method removes all handles and separates the horn from the
head (see Figure 8 (c)).

Statistics for each model, including the handle threshads
reported in Table I. The thresholds, €) are specified as the
ratio of the area of the cross-section surfaces to the area of
a side of the ESO bounding box. In each example, the ESO ©) (d)

grids are created by first converting from polygonal formats hand (@) with both de knand
: : s £ig. 10. Removing handles on a mug (a) with both an outside knan

an octree grid using the PolyMender So_ftware [23] (timing i n inside knot complement, the result is in (b). The object skeleton (c) and
reported). Genus are computed on the iso-surface of the E@a®background skeleton (d) each contains surfaces yetireapone of the
grid. All tests are performed on a 3.0GHz P4 machine Wiﬁ_lévo hfé}ngles aﬁ isolated skeleton hed%eS-I (Thciidc(i eollges Lﬁéd?%ogicarl‘ly

H H identified as the same point on the dual gri ual to the Infi on the
ZG RAM'. Note that even on a 409@yrid, the entire process primal grid).
finishes in less than twenty minutes on a consumer-level PC.

VIl. DISCUSSION still detect the handles as graph cycles, because eachehandl!
reduces to isolated skeleton edgegiimer the object skeleton
Here we further examine the robustness of our algorithm & or the background skeletof;. Combining cutting and
solid models with uncommon topologies. In particular, wélling, the two handles are removed, as shown in4b).
examine when the skeleton contains faces besides points and
edges, and show how a particular type of complex handleshQr each handle detected as a cycle on the s.keIeto.n graphz our
removed with no new handles introduced. method guarantees remoyal of the handle W|tr_10ut mtro@ucm_
new handles. We especially demonstrate this advantage in
For all of models that we have tested so far, we Obierv%*noving ablockedhandle, as shown in Figure 11. The genus-
that the skeletons of the objedt and the background 2 torus in (a) contains a tunnel inside (as shown in wireframe
consist of only points and edges. However, an arbitrary hodg (c)), which connects to the outside through an outlet at th
may contain convoluted features, such as internal Ca)/iti%p_ Note that s|mp|y Cutting the torus ring at an arbitrary
complements of 3D knots and the “house-with-two-roomgocation will introduce a new handle (i.e., the total genus
[27], which yield skeletons containing faces that form elbs remains 2) due to the presence of the tunnel that “blocks”
surfaces. Figure 10 (a) shows an extreme case where a ty cut. Our method results in filling of the interior tunnel
handled mug has a knotted handle on the outside and a kpgghlighted in (d)) while cutting the torus ring at the thn
complement on the inside. As a result, the object skeletgitlet, which yields a genus-0 output.
S/ contains faces around the knot complement while the
background Skeletorﬁv contains faces around the knotted 2Although lacking formal proof, we hypothesize that any scefaandle
handle, as shown in (c,d). Nevertheless, the skeleton graphn be detected using the skeleton graph of eifyeor Sy



input model was created (e.g., from scanned data, using CAD
software, from medical images, etc.). Although we do not

assume a particular source of topological errors in thispap

it will be interesting to examine new measures that cater to
specific types of input models, and new ways for resolving

handles (e.g., approximating small entangling handlesron a

otherwise smooth surface using a single smooth patch).

Moreover, we will investigate improved thinning methodatth
extend recent level-set techniques [29] on uniform grid to
ensure a uniform thinning speed on adaptive grids, which wil
yield a smoother skeleton as well as handle cuts with less
bias towards axes directions. Such thinning techniqudshwil
useful in general for extracting shape-preserving sketetuf

The

(d)

Fig. 11. Removing a blocked handle. (a,c): A genus-2 torugaiing a
tunnel inside (with an outlet at the top). (b,d): Handles reeabby filling the

large models.

ACKNOWLEDGMENT

authors would like to thank Stanford University Com-

puter Graphics Laboratory for providing the scanned models
(Buddha, Dragon and David) and Cindy Grimm for providing
the Tree and Spider-web models. We would also like to thank

interior tunnel (see red square) and breaking the extesiist Note that no  Cindy Grimm and Rachel Roberts for their helpful discussion

new handles are introduced.

VIII. CONCLUSION

(1]
We present a novel volumetric method for removing topo-
logical errors on solid models in the form of small handle
resulted from surface reconstruction. Our method is bas«se%]
on computing a skeleton representation using morpholbgica
operations on an adaptive grid structure. For each handjg
removed, either by cutting the ring or by filling the tunnel,
our method guarantees not to introduce additional handles.
In addition, large models can be processed at very high
resolutions in an efficient manner. [4]

Our current method has several limitations, and we are inveg;)
tigating possible solutions as part of our future resedriist,

just as other volumetric mesh-repair methods [16], [173],]2
our approach requires the entire input model to be converted
to and from a volume grid, and loss of geometric detaild®!
may occur when the input is in polygonal format (despite
the fact we use vertices directly sampled from the origin
geometry, see Section IV.C). A possible extension is toyappl
our volumetric repair only to portions of a mesh that have
been identified to contain topology errors using mesh-basegj
approaches. This hybrid idea has already been realized in a
different setting for repairing geometric errors on CAD raizd

[30]. [9]

Second, like previously proposed measures of handle size
based on surface area [15] and geodesic loop lengths [17],
our cross-section-area-based measure is not always fivdical1°l
of a feature handle versus a topological error. Similanting

and filling may not be the best way to resolve handles in all
cases. The right measure and removal scheme should consll%jlér
the source of topological errors, which varies by how the
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APPENDIX |
TOPOLOGY PROPERTY OFEESOISO-SURFACE

Proposition 1: Let M denote the iso-surface on a valid ESO
grid with objectV and backgroun®. ThenM is a crack-free,
2-manifold surface satisfying equation 4.

Proof:

1)

2)

3)

4)

5)

10

Crack-free surface: Applying Dual Contouring, each
edge (or face) on the iso-surface is dual to a non-empty
face (or edge) in the composite gm}i Since each non-
empty grid face always contains an even number of non-
empty grid edges, each edge on the iso-surface is shared
by an even number of faces, and the surface is closed.

Manifold surface: Consider a non-empty fatdn the
composite gridG. When G is valid, an element in

G (or dual grid G) must be positive (or negative) if
some element containing is positive (or negative). As

a result, positive points and negative pointsfimlways
form two edge-connected components. By duality, the
iso-surface edge dual t is shared by two polygons.
Similarly, we can show that the positive points and
negative points in a non-empty cell in the composite grid
G always form two connected components, and hence
the iso-surface vertex dual to the cell is contained in a
manifold neighborhood.

X|V] = x|V]: Since eaciN-D element in the5\V is dual

to an (3—N)-D element inV, we havex[V] — x|V] =
x|G]. On the other hand, observe thatis constructed
by gluing the interior elements to a single outside point,
which topologically forms a genus-0 surface in 4D.
Hence we have([V] — x|V] = x[G] = 0.

XIM] = x|V] + x[V]: Consider the decomposition of

G into non-empty elementsM), elements containing
only positive points V) and elements containing only
negative points\). Note thatx[V] = x[V] and x|V] =
Xx[V]. Using Dual Contouring, eacN-D element onM

is due to a non-empty3— N)-D element inG, hence
X[M] = —x[M]. For the same reason thgf{G] = 0, we
have x V] + X[V] — X[M] = x[G] = 0.

c[M] = cV] +c[V] — 1: The connected components of
V andV can be represented as nodes in a connected,
acyclic graph where each edge denotes a connected
piece of surface separating an object component and a
background component. The equality therefore holds by
graph theory.



