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Abstract

We present a method for repairing topological errors on solid models in the form of small surface handles, which often arise
from surface reconstruction algorithms. We utilize a skeleton representation that offers a new mechanism for identifying and
measuring handles. Our method presents two unique advantages over previous approaches. First, handle removal is guaranteed
not to introduce invalid geometry or additional handles. Second, by usingan adaptive grid structure, our method is capable of
processing huge models efficiently at high resolutions.
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Topology Repair of Solid Models Using Skeletons

I. I NTRODUCTION

With the advance of data acquisition techniques, we have
witnessed a boom of high resolution 3D data in recent years.
Although many surface reconstruction methods are capable of
generating water-tight surfaces from these data, the resulting
models may still exhibit topological errors in the form of
small handles, such as those shown on the left of Figure 1.
These high-frequency topological features may unnecessarily
increase the complexity of the model and make it unsuitable
for subsequent processing tasks such as mesh simplification,
mesh parameterization, and physical computation.

Our goal is to remove small handles on the surface of a solid
model, so that a low-genus model can be prepared for further
applications. To be able to process large models with complex
errors, which are typical in today’s surface reconstruction
problems, we particularly desire the following properties:

• Discriminative: The method should be able to differen-
tiate between big and small handles.

• Robust: Removal of existing handles should not intro-
duce invalid geometry or additional handles.

• Efficient: The method should handle huge models at high
resolutions within reasonable time and memory.

Unfortunately, to the best of our knowledge, none of the
current topology repair methods satisfy all of our require-
ments. In particular, it is difficult for mesh-based or existing
volumetric methods to guarantee that removing a handle
does not introduce a new handle. Furthermore, the time and
space consumption of traditional methods are typically high
for processing large models, either due to operations that
require the full mesh resolution or the reliance on a uniform
volumetric grid.

In this paper we introduce a new, volumetric approach of
topology repair that meets all of the three requirements. Our
method thins a 3D volumetric model to a discrete skeleton,
where the task of detecting handles on the model is reduced
to detecting cycles in a graph defined by the skeleton. Using
topology-preserving morphological operations, the modified
skeleton with cycles removed grows back into the model
with the corresponding handles removed. Both thinning and
growing are performed on an adaptive grid structure for
efficient processing of large models. In addition, our method
allows selective removal of small handles by computing and
utilizing a thickness measure on the skeleton.

Contributions We present a robust and efficient solution for
topology repair. Our method consists of conceptually simple
steps, and possesses two advantages over existing techniques:

1) Unlike previous mesh-based or volumetric approaches,
our method is guaranteed to remove handles without

introducing additional ones via skeleton modification
and topology-preserving morphological operations.

2) Whereas previous volumetric methods rely on a uniform
grid structure, our method operates on an adaptive octree
grid and is capable of processing huge models at very
high resolutions (e.g., 40963) in minutes.

II. RELATED WORKS

A. Skeletons

Skeletons are compact, medial representations that describe
the shape and connectivity of a 3D object [1]. In contrast
to skeletonization methods based on voronoi diagrams [2],
[3] and distance transforms [4], [5], iterativethinning excels
as an efficient, easy-to-implement technique for generating
topology-preserving skeletons of volumetric images (see an
excellent survey in 2D by [6] and a 3D introduction by [7]).
Given a solid represented as a set of 3D grid points, each
thinning iteration removes points in the outmost layer of the
set. The key of topology-preservation lies in identifyingsimple
points [8] whose removal would not alter the topology of the
solid. Unfortunately, existing thinning methods rely heavily on
the use of a uniform grid because it is convenient to identify
simple points on such a grid, which limits these methods
to relatively low resolutions that are often insufficient for
capturing the topology of large models.

B. Topology-controlled surface reconstruction

This class of methods [9]–[12] is designed to reconstruct
iso-surfaces from volumetric data with a known topology
type. Starting with an initial solid with the correct surface
topology, these methods grow (as opposed to thin) the solid
in a topology-preserving manner. While such methods have
been effective in reconstructing topological spherical cortical
surfaces from MRI data, application to other topologies is
difficult as these methods requirea priori knowledge of the
desired topology as well as the geometry of the initial solid.

C. Mesh-based topology repair

The first class of methods for repairing the topology of a given
surface performs surgeries directly on the polygonal mesh.
Representative work includes the method of Fischlet al. [13],
which inflates a reconstructed cortical surface into a sphere
and removes handles by identifying and deleting overlapping
triangles on the inflated sphere. Using the concept ofα-hulls,
El-Sana and Varshney [14] achieve controlled simplification
of CAD models by identifying small tunnels and surface
concavities as regions not accessible to a sphere of user-
specified radius rolling on the surface. Also in a controlled
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Fig. 1. Topology repair on a spider-web model: the original genus-75 model reconstructed from point sets with many small and entangled handles (left),
topology repair removes all erroneous handles except for the17 major web holes (right).

manner, Guskov and Wood [15] employs a surface growing
technique that identifies and removes small handles completely
contained in a mesh neighborhood of a given size.

Mesh-based methods have the advantage that topology
changes only involve local modification of the geometry.
However, there are two typical drawbacks. First, the removal
of existing handles directly on the mesh may introduce
invalid geometry in the form of self-intersections. Second,
it is computationally expensive to identify handles directly
on a large mesh, for example, by surface inflation [13], by
computing and intersectingα-prisms of triangles [14], or by
exploring a surface neighborhood that can be potentially large
for identifying long and thin handles [15].

D. Volumetric topology repair

The second class of methods, to which our method belongs,
removes surface handles by modifying a volume representation
of the input model. In a simple approach, Nooruddin and Turk
[16] applied opening and closing operations on the volume
to remove small surface handles. However, these global mor-
phological operations may create additional handles in areas
away from the existing ones. In a more targeted approach, the
method of Woodet. al. [17] detects each surface handle as a
cycle in the Reeb graph of the iso-surface extracted using the
Marching Cubes method [18], and performs handle removal
by filling a disk-like volume inside the shortest geodesic loop
corresponding to each cycle. Still, the main problem with
this hybrid approach, as commented on by the authors, is
the possible introduction of new handles due to the loop-
filling operation. In addition, the removal of each handle
requires re-building of the Reeb graph on a uniform grid,
which can be time-consuming for a large number of handles.
The detection of shortest geodesic loops on big handles can
also be expensive.

Our method is most closely related to the graph-based ap-
proach of Shattuck and Leahy [19] and Hanel al. [20].
Both methods encode the topology of the solid (instead of
the surface) as a graph, and remove handles by breaking
cycles in the graph. Using topology-preserving morphological
operations, handle removals are guaranteed not to introduce

new handles. However, both methods involve complex graph
generation and analysis that are restricted to uniform grids.
In particular, the construction of the Reeb graph in [19] is
based on axes-aligned sweeping, while handle removal using
the graph in [20] requires non-trivial connectivity analysis to
identify “hidden” handles within each graph node. In contrast,
our skeleton representation of the solid is simple enough to
compute on an adaptive grid and allows for easy identification
of surface handles of different sizes.

Recently, a multi-resolution solution was proposed by Szym-
czak and Vanderhyde [21], which applied topology-preserving
carving operations to extract iso-surfaces with the desired
genus. This method, however, provides no direct means for
controlling the size of the handles to be removed. In addition,
the removal operation is limited to filling tunnel-like handles,
and hence may result in modifying a much larger volume than
necessary. In comparison, our handle removal is guided by an
accurate measure of handle sizes, and allows for both tunnel-
filling and ring-cutting (see the removal of the two handles in
Figure 6 (e)).

III. M ETHOD OVERVIEW

To avoid introducing invalid geometry (e.g., self-intersections)
as the result of topology repair, we represent an input model
as an implicit volume. The surface of the model, represented
as the iso-surface on the volume, partitions the volume into
the object (e.g., interior) and thebackground(e.g., exterior).
To remove surface handles, our method involves three concep-
tually simple steps, as illustrated in Figure 2:

1) Thin the object into askeletonthat preserves the topol-
ogy of the object (b).

2) Removecycles in the skeleton by computing the span-
ning tree of the graph defined by the skeleton (c).

3) Grow the modified skeleton to form a new object that
preserves the topology of the skeleton (d).

Intuitively, a cycle in the skeleton corresponds to a ring-like
handle on the original surface, and removing the skeleton cycle
has the effect of “cutting” the ring at the location where the
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Fig. 2. 2D illustration of handle removal using skeletons. (a): The original
object (darkened points, edges and faces) and the iso-surface (solid lines).
(b): The skeleton of the object. (c): The modified skeleton consisting of a
spanning tree of (b) (removed edges are highlighted). (d): The new object
grown from the modified skeleton (c), resulting in the removal of handles.

cycle is cut (see Figure 2 (c,d)). In our method, removing
one skeleton cycle is guaranteed to cut exactly one surface
handle without introducing additional handles (unlike mesh-
based [13]–[15] or previous volumetric [16], [17] handle-
removal methods). Furthermore, we can associate the skeleton
with a thickness function, which allows the user to control the
size of handles to be removed and allows each ring to be cut
at its thinnest location.

The above steps can be applied to both the object and the
background. When applied to the background, a cycle in the
background skeleton corresponds to a tunnel-like handle on
the original surface, and removing a skeleton cycle resultsin
“filling” of the tunnel. Like cutting, filling is guaranteed not
to introduce additional handles, and tunnels can be selectively
filled based on their sizes.

IV. V OLUME REPRESENTATION

Before presenting the main algorithms, we first introduce an
adaptive volume representation on which the algorithms will
be performed.

A. Motivation

Our volume representation is motivated by thinning, the pro-
cedure that we will use to compute skeletons (see detailed
discussion in the next section). Our thinning algorithm oper-
ates on a 3Dcellular complex, which consists of points (0-D),
edges (1-D), faces (2-D) and cells (3-D). In particular, each
edge connects two points, each face is enclosed by a ring of
edges, and each cell is enclosed by an envelop of faces. For

example, the darkened points, edges and faces in each grid of
Figure 2 form a cellular complex in 2D.

To represent a cellular complex on a volumetric grid, we need
to be able to tag each grid element (e.g., point, edge, face and
cell) that belongs to the complex. Note that merely storing
signs at grid points, as in traditional volume representations,
is not sufficient: the edge connecting two points that belongto
a cellular complex may not, itself, be part of that complex (see
highlighted region in Figure 2 (c)). Even the more advanced
representation [22] restricts tagging to just points and edges.

B. Representation

We begin with an octree structure to support efficient process-
ing of large models at high grid resolutions. We additionally
associate eachminimalgrid element of the octree with a+/−
sign. Here, a minimal element is the one that does not contain
any smaller elements of the same dimension (e.g., a minimal
edge contains no smaller edges on the grid). For convenience,
we shall drop the prefix “minimal” hereafter. We call the new
volume representation anExtended Signed Octree(ESO).

To facilitate thinning, both object and background must as-
sume the form of a cellular complex. Theobject V in an ESO
G is defined as the set of all positive elements inG. Note that
not every ESO yields an object that is a cellular complex: a
positive edge containing a negative point violates our previ-
ously stated definition that an edge in a cellular complex must
contain two points of the complex. As a result, we further
require that, in avalid ESO grid, each positive element must
contain only positive elements of lower dimensions.

Unlike the object, the set of all negative elements on a valid
ESO isnot a cellular complex. To this end, we consider the
dual of a valid ESO gridG, denoted asĜ, which consists of
points, edges, faces and cells topologically dual to the cells,
faces, edges and points onG. In addition, each element in
Ĝ is given the sign of its dual element inG. Geometrically,
points inĜ are located at the centroids of their corresponding
cells on the primal gridG.1 A 2D illustration of a portion of
ESO grid and its dual are shown in Figure 3 (a,b). As such,
we define thebackgroundV as the set of negative elements in
the dual gridĜ (shown as dimmed elements in Figure 3 (b)).
Since each negative element of a valid ESO is only shared
by negative elements of higher dimensions, by duality, every
negative element in̂G contains only negative elements of lower
dimensions. Therefore,V is also a cellular complex.

Finally, we note that symbolsG, Ĝ, V and V all refer to a
same volume representation. In particular, any changes to the
objectV involve flipping the signs of some grid elements in
the primal gridG, hence affecting the signs in the dual grid
Ĝ and the composition of the backgroundV. In addition, we
note that ˆ̂G = G andV = V.

1For completeness, the outside of the root node of the primal octree is
represented as a cell element inG with infinite size, whose dual in̂G is a
point at infinity.
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Fig. 3. (a) A primal ESO gridG, (b) The dual gridĜ, (c) The composite
grid G̃ constructed by overlayingG with Ĝ and the iso-surface (solid lines). In
(a,b), positive grid elements are darkened and negative elements are dimmed.

C. Operations

1) Constructing ESO:A valid ESO grid can be easily con-
verted from a traditional octree grid, where signs are stored at
grid points, by retaining existing signs while assigning positive
signs to edges, faces and cells that contain only positive points.
The initial octree grid can be obtained either directly froma
volume image (e.g., MRI data) or from a polygonal mesh using
scan-conversion routines. In this paper, we use the PolyMender
software [23], which is capable of producing a water-tight
solid model from arbitrary polygonal soups.

2) Extracting Iso-surface:To construct the iso-surface of an
ESO gridG, we extend the Dual Contouring algorithm [24],
which was designed for octrees with only signs at grid points.
In particular, we consider a composite grid, denoted asG̃,
that overlaysG with its dual Ĝ, as shown in Figure 3 (c).
Each point inG̃ corresponds to an element inG as well as its
dual element inĜ. Recall that Dual Contouring proceeds by
first creating one vertex for each grid cell that is non-empty
(i.e., containing grid points with different signs), followed
by creating one polygon for each non-empty grid edge. Iso-
surface extraction onG proceeds similarly in two steps:

1) Create one vertex for each pair of apositive point
and anegativecell that contains the point (such pair
corresponds to a non-empty cell iñG).

2) For each pair of apositive N-D element σ and a
negative (N + 1)-D element δ that containsσ (such
pair corresponds to a non-empty edge inG̃), create one
polygon connecting vertices created for each pair of a
point contained byσ and a cell containingδ .

While Dual Contouring guarantees to produce a crack-free iso-
surface, applying the above algorithm in a valid ESO further
ensures a manifold output (see proof in Appendix A). To
reproduce geometry details, each vertex created in the first
step for a point-cell pair is located at the cell’srepresentative
vertex. The representative vertex of a non-empty octree cell
is obtained during ESO construction either from scalar values
at grid points or by sampling polygonal geometry (provided
by PolyMender [23]). If a representative vertex does not exist
(e.g., in a newly created non-empty cell after topology repair),
the vertex associated with the point-cell pair is temporarily

σ

δ

σ σ

σ

δ δ
δ

Fig. 4. Thinning using simple removals. Each simple removal (indicated by
an arrow) removes a simple elementσ and its witnessδ . Thinning terminates
(far right) when no more simple elements can be found.

located halfway between the point and cell centroid. A post-
processing step is then applied to smooth these temporary
vertices using iterative averaging [25].

Iso-surface extraction can be implemented as tree traversals on
the ESO grid. We utilize the recursive procedures proposed
in [24], which visits each grid element together with leaf
cells sharing the element in one octree traversal. Using these
procedures, step (1) is performed in one traversal of all grid
points, and step (2) is performed in another traversal of all
grid points, edges and faces. Details of the procedures can be
found in [24].

V. HANDLE REMOVAL

Given an input model represented as an ESO gridG, our
method removes handles on the iso-surface ofG in three steps:
thinning, skeleton cycle removal, and growing. Performing
these steps on the objectV results in cutting ring-like handles,
while performing the same steps on the backgroundV results
in filling tunnel-like handles.

We first describe how each step is performed on the object
V, although the same algorithms are equally applied to the
backgroundV. We next show that these steps result in robust
removal of existing handles without introducing additional
handles. Finally, we discuss efficient implementations of the
algorithms on the octree.

A. Algorithms

1) Thinning: The skeleton of the object is obtained bythin-
ning, which iteratively removes elements from the object
boundary. In order to preserve the topology of the object,
thinning is restricted to simple elements:

Definition 1: An N-D elementσ in a cellular complexV is
called simplewith respect toV if σ is contained in exactly
one (N+1)-D elementδ of V . In particular,δ is called the
witnessof σ .

At each step of thinning, we remove a simple elementtogether
with its witness from the object. We call the removal of such
a pair asimple removal. Thinning using simple removals is
illustrated in Figure 4, where a simple edge and its witness face
are removed first, followed by a sequence of simple removals,
each deleting a simple point and its witness edge. Thinning
stops when no more simple elements can be found (e.g., a
single point is not a simple element based on Definition 1).
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2) Skeleton cycle removal:The skeleton generated by thin-
ning may consist of points, edges and faces. LetSV be the
skeleton ofV. We consider theskeleton graphwhose edges
are isolatededges (i.e., edges with no incident faces) onSV ,
denoted asISV , and whose nodes are connected components
in the remainderSV \ ISV . Note that when the skeletonSV

contains only points and edges, the skeleton graph isSV itself.
Observe in the 2D example of Figure 2 (b) that each cycle in
the skeleton graph lies centered in a ring-like handle ofV.

Ideally, we would like to identify small handles and to “cut”
open a handle ring at its thinnest location. To this end, we
shall associate a thickness value at each isolated skeletonedge,
which measures the cross-section area of the object at that edge
(discussed next). Given the thickness-weighted skeleton graph,
we compute the complement of themaximumspanning tree (or
spanning forrest ifc[SV ] > 1) of the skeleton graph, and denote
E as those edges in this complement whose thickness value
falls below a user-specified thresholdε. RemovingE from
the graph only cuts those cycles whose minimum thickness
is smaller thanε, and the cuts (i.e.,E) take place at the
thinnest portion of each cycle (see Figure 2 (c)). Accordingly,
the modified skeletonS′V is computed asS′V = SV \E.

a) Generating sets:To explain the thickness measure, we first
introduce thegenerating set, W[e], of an isolated edgee in the
skeletonSV . Formally,W[e]∈V is defined as the minimum set
so thatV \W[e] is a cellular complex, and thinningV \W[e]
yieldsSV \{e}. Intuitively, W[e] is a solid “slice” of the object,
such that removing the edgee from the skeleton is the same as
removing the sliceW[e] from the object and applying thinning.
Note that generating sets are related to stable manifolds in
a flow complex [26]. While the latter relies on a smooth
Euclidean distance function, the former is defined by iterative
thinning on a discrete grid.

Based on the thinning process that reducesV to SV , we present
a recursive construction for the generating sets:

W[σ ] = {σ}∪
⋃

δ∈P[σ ]

(W[δ ]∪W[s[δ ]]) (1)

where σ ∈ V is any N-D element,P[σ ] ∈ V is the set of
all (N+1)-D elements containingσ , ands[δ ] is the element
removed together withδ in a simple removal (i.e., a simple
element of whichδ is the witness, or the witness ofδ ) when
thinningV to SV .

To show that equation 1 meets our definition of a generating
set, we first observe thatV \W[σ ] is a cellular complex for any
σ . This is because any element inV containing an element in
W[σ ] belongs toW[σ ]. In addition, for an isolated edgee, all
elements inW[e] but e are paired in simple removals. Hence
V \W[e] can be thinned toSV \{e} using the same sequence
of simple removals, except those inW[e], that reduceV to SV .
Finally, the construction contains only necessary elements and
henceW[e] is minimal.

b) Measuring handles:Observe from equation 1 that the
dimensions of elements in the generating setW[e] are no
smaller than that ofe (i.e., 1). Accordingly, its dual elements

(a) (b)

Fig. 5. (a): The original objectV. (b): The skeletonSV with thickness values
(red for thin and blue for thick) and the dual elements of generating sets ˆW[e]
(black cross-section curves) at each skeleton edgee.

ˆW[e] in the dual gridĜ contain only points, edges and faces.
As the generating setW[e] forms a solid slice of the object
V, its dual ˆW[e] forms a cross-section surface ofV that “cuts
across” the isolated edgee. Figure 5 (b) shows a 2D example,
where the dual of each generating set forms a cross-section
curve.

The thickness at an isolated edgee, denoted asw[e], is
therefore defined as the area of this cross-section surface

ˆW[e]. The construction ofW[e] in equation 1 gives a recursive
evaluation ofw[e]:

w[e] = A[e]+ ∑
δ∈P[e]

w[s[δ ]] (2)

where A[e] denotes the area of the dual face ofe in the
dual grid Ĝ and w[s[δ ]] evaluates to zero ifs[δ ] is not an
edge. To computeA[e], we triangulate the dual face ofe
using the midpoint ofe when the face is not planar. Figure 5
demonstrates the thickness measure on a skeleton computed
from a 2D object. Observe thatw[e] adapts well to object
thickness at various locations.

3) Growing: The final step “grows” the modified skeleton
S′V back into a new object. Instead of reversing the thinning
process, which is a global operation, we take a different, local
approach. LetE be the edges removed from the original skele-
ton SV , i.e., E = SV \S′V . We simply subtract the generating
sets associated with edges inE from the original objectV.
The new object is thus computed asV ′ = V \

⋃
e∈E W[e].

4) Cutting and filling handles:The above three steps can be
applied to either the objectV and the backgroundV, with
the effect of eithercutting the ring-like handles orfilling the
tunnel-like handles. We illustrate results of cutting and filling
using a simple 2-holed torus in Figure 6. Specifically, we let
the user specify two different thresholdsε,ε. We first cut rings
on V that are thinner thanε, creating a modified objectV ′,
and next fill tunnels onV ′ that are narrower thanε. Observe
in Figure 6 that due to the use of our thickness measure, each
cutting and filling always takes place at the thinnest location
of a ring or the narrowest location of a tunnel.



6

Fig. 6. Removing handles on a 2-holed torus: (a) The original object, (b,c)
cutting the top ring, (d,e) filling in the bottom tunnel. Edgethickness on the
skeletons are shown from red (small) to blue (big). Black spheres at the ends
of the skeleton in (d) are topologically the same point in the dual grid Ĝ that
is dual to the outside cell of the primal gridG.

B. Robustness of handle removal

Let M be the iso-surface on the input ESO grid, andM′ be
the iso-surface on the modified ESO grid after performing
thinning, skeleton cycle removal, and growing. Here we show
that M′ has exactlym fewer handles thanM, wherem is the
number of cycles removed from the skeleton graph.

Using Euler’s formula, the number of handles on a closed
manifold iso-surfaceM is computed by its genusg[M]:

g[M] = c[M]−χ[M]/2 (3)

where c and χ are the number of connected components
and the Euler characteristic. The Euler characteristic of a3D
cellular complexV is defined as the alternating sum

χ[V ] = k0[V ]−k1[V ]+k2[V ]−k3[V ],

whereki [V ] enumerates the number of points, edges, faces and
cells in V for i = 0,1,2,3 [27] (surfaceM can be considered
as a special cellular complex with no cell elements).

The robustness of our method is built upon the following two
equalities that relate the topology ofM to that of the object
V and the backgroundV (see proof in Appendix A):

c[M] = c[V]+c[V]−1
χ[M] = 2χ[V] = 2χ[V]

(4)

The key observation from equation 3 and equation 4 is that
the number of handles on the iso-surfaceM dependsentirely
on the Euler characteristic and connected components of the
objectV and backgroundV, that is:

g[M] = c[V]+c[V]−1−χ[V] = c[V]+c[V]−1−χ[V] (5)

To confirm our hypothesis thatg[M′] = g[M]−m, where m
is the number of cycles removed from the skeleton graph, we
only need to show that the three-step topology repairincreases
χ[V] (or χ[V]) by m while preserving both c[V] and c[V]
(without loss of generality, each step is demonstrated onV):

1) Thinning: A simple removal is in fact equivalent to anel-
ementary simplicial collapsein algebraic topology [28],

which preserves the homotopy type of a 3-manifold. Let
SV be the skeleton ofV after simple removals, we have

χ[SV ] = χ[V], c[SV ] = c[V], c[SV ] = c[V] (6)

2) Skeleton cycle removal: By computing the spanning tree
of the graph ofSV , the modified skeletonS′V preserves
the connectivity ofSV while removing as many isolated
edges as the cycles removed from the graph:

χ[S′V ] = χ[SV ]+m, c[S′V ] = c[SV ], c[S′V ] = c[SV ] (7)

3) Growing: By definition of generating sets, thinning
the new objectV ′ yields the skeletonS′V . Combining
equation 6 and 7, we have

χ[V ′] = χ[V]+m, c[V ′] = c[V], c[V ′] = c[V]. (8)

C. Implementation

1) Thinning: Thinning of the objectV is performed on an
ESO grid in an iterative manner. During each iteration, we
make two octree traversals. In the first traversal, we mark every
positive point, edge and face that is simple by Definition 1.
In the second traversal, we visit each marked elementσ and,
if σ is still simple at the time of visit, invert the sign of both
σ and its witness. The two traversals simulate the peeling of
elements on the outmost layer ofV. Thinning terminates if no
simple elements are found in the first octree traversal. In our
implementation, we use the recursive procedures detailed in
[24] for efficient traversing of octree grid elements.

Note that thinning of the backgroundV can still be performed
using octree traversals on the primal gridG based on the
following observation: the dual of anN-D negative elementδ ,
denoted aŝδ in Ĝ, is simple with respect toV if δ contains
exactly one(N−1)-D negative elementσ in G.

2) Handle measurement:We compute the thickness measure
w[e] for each isolated skeleton edgee during thinning by
slightly modifying the two octree traversals described above.
Note that a positive face may be the witness of more than one
simple edge. To obtain a minimal thickness measure, in the
first octree traversal, we associate a facef with the minimal
w[e] of all simple edgese that f contains. In the second
traversal, we invert the signs of a simple edgee and its witness
face f only if w[e] equals the minimal value stored atf , and
we update the thickness measure on the remaining edges off
using equation 2.

3) Growing: Growing involves only local modifications of
the original object using the generating sets. To constructthe
generating sets using equation 1, we maintain pointers that
track the simple elements from their witnesses during thinning.
Note that growing typically takes negligible time due to the
small proportion of the handles relative to the entire volume.

VI. RESULTS

We first perform handle removal on a synthetic tree model
with genus 18 in Figure 7. Observe that the weighting of
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(a) (b) (c)

Fig. 7. (a) A tree model with genus 18. (b) The topologically repaired model with genus 0 using cutting thresholdε = 0.01 and filling thresholdε = 0.04.
(c) Closeup views of the rings (r1, r2) and tunnels (h1,h2), where the top row shows the original surface with the modified skeleton, and the bottom row
shows the modified surface.

Fig. 8. Topology repair of the Asian Dragon model at octree depth 11. The input model contains several handles where the horntouches the head (b),
resulted from geometric repair of the original, self-intersecting polygonal model by PolyMender [23]. Close-up looks atthe handles site before and after repair
are shown in (c) top and bottom, where the pictures on the rightare viewed from inside the dragon head.

Fig. 9. Topology repair of the Stanford Buddha model at octreedepth 10 (left), showing a genus-6 and a genus-0 result, and the 2mm David model repaired
at octree depth 12 (right), showing closeup views of the cut and filled handles.

skeleton edges using our thickness measure correctly identifies
the thinnest portion of each ring-like handle to be cut and the
narrowest portion of each tunnel-like handle to be filled. In
addition, handle removals result in only local modifications
of the volume, and the geometry away from the modification
sites are preserved.

Figure 1 shows how our method differentiates handles of
various sizes and removes complex handles in a robust manner.
The spider-web model shown on the left is reconstructed from
a noisy point cloud and contains 75 handles, many of which
are small. Entangling rings and tunnels are shown in the close-
up views. By performing filling with an appropriate threshold,
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Model Octree Octree PolyMender Genus ε ε Genus Cut Fill Contour Total Memory Output
Depth Leaf Cells Time (sec) Before After Time (sec) Time (sec) Time (sec) Time (sec) Usage (MB) Triangles

Spider Web 7 63799 6.8 75 0.0 0.003 17 0 2.5 0.4 2.9 6 65710
Tree 7 181945 2.2 18 0.01 0.04 0 3.5 5.9 1.6 11.0 16 134364

Knotty Mug 8 437802 1.9 2 0.01 0.01 0 6.7 12.0 3.2 21.9 38 378004
Buddha 10 3989252 49.5 11 0.001 0.001 6 62.3 130.1 29.5 221.9 336 3434166

Asian Dragon 11 13978434 264.1 17 0.0005 0.0005 0 218.7 427.3 103.2 749.2 1173 11987648
David (2mm) 12 20749723 330.9 10 0.0005 0.0005 4 325.9 638.0 157.7 1121.6 1743 17815146

TABLE I

PERFORMANCE RESULTS ON PROCESSING VARIOUS MODELS ON A CONSUMER LEVEL PC WITH 3.0GHZ CPU AND 2GB MEMORY. TIMING EXCLUDES

I/O DURING CONTOURING.

all handles but the 17 main “holes” of the spider-web are
removed, and no additional handles are created.

We demonstrate our method on large scanned models in Figure
8 and 9. The Happy Buddha, Asian Dragon and Michelan-
gelo’s David (reconstructed at 2mm resolution) are processed
respectively at octree depth 10, 11 and 12, equivalent to a grid
of size 10243, 20483 and 40963. To the best of our knowledge,
topology repair at the latter two resolutions have not been
reported before. Note in particular that the original Asian
Dragon mesh from the Stanford 3D Scanning Repository
contains a self-intersection where the horn penetrates into the
head. Mesh repair using PolyMender results in a number of
topological handles at that location (see Figure 8 (b)). Our
method removes all handles and separates the horn from the
head (see Figure 8 (c)).

Statistics for each model, including the handle thresholds, are
reported in Table I. The thresholds (ε,ε) are specified as the
ratio of the area of the cross-section surfaces to the area of
a side of the ESO bounding box. In each example, the ESO
grids are created by first converting from polygonal formatsto
an octree grid using the PolyMender software [23] (timing is
reported). Genus are computed on the iso-surface of the ESO
grid. All tests are performed on a 3.0GHz P4 machine with
2G RAM. Note that even on a 40963 grid, the entire process
finishes in less than twenty minutes on a consumer-level PC.

VII. D ISCUSSION

Here we further examine the robustness of our algorithm on
solid models with uncommon topologies. In particular, we
examine when the skeleton contains faces besides points and
edges, and show how a particular type of complex handles is
removed with no new handles introduced.

For all of models that we have tested so far, we observed
that the skeletons of the objectV and the backgroundV
consist of only points and edges. However, an arbitrary model
may contain convoluted features, such as internal cavities,
complements of 3D knots and the “house-with-two-rooms”
[27], which yield skeletons containing faces that form closed
surfaces. Figure 10 (a) shows an extreme case where a two-
handled mug has a knotted handle on the outside and a knot
complement on the inside. As a result, the object skeleton
SV contains faces around the knot complement while the
background skeletonSV contains faces around the knotted
handle, as shown in (c,d). Nevertheless, the skeleton graphs

(a) (b)

(c) (d)

Fig. 10. Removing handles on a mug (a) with both an outside knotr1 and
an inside knot complementh1, the result is in (b). The object skeleton (c) and
the background skeleton (d) each contains surfaces yet captures one of the
two handles as isolated skeleton edges. (Thick edges in (d) are topologically
identified as the same point on the dual grid dual to the infinitecell on the
primal grid).

still detect the handles as graph cycles, because each handle
reduces to isolated skeleton edges ineither the object skeleton
SV or the background skeletonSV . Combining cutting and
filling, the two handles are removed, as shown in (b).2

For each handle detected as a cycle on the skeleton graph, our
method guarantees removal of the handle without introducing
new handles. We especially demonstrate this advantage in
removing ablockedhandle, as shown in Figure 11. The genus-
2 torus in (a) contains a tunnel inside (as shown in wireframe
in (c)), which connects to the outside through an outlet at the
top. Note that simply cutting the torus ring at an arbitrary
location will introduce a new handle (i.e., the total genus
remains 2) due to the presence of the tunnel that “blocks”
the cut. Our method results in filling of the interior tunnel
(highlighted in (d)) while cutting the torus ring at the tunnel
outlet, which yields a genus-0 output.

2Although lacking formal proof, we hypothesize that any surface handle
can be detected using the skeleton graph of eitherSV or SV .
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(a) (b)

(c) (d)

Fig. 11. Removing a blocked handle. (a,c): A genus-2 torus containing a
tunnel inside (with an outlet at the top). (b,d): Handles removed by filling the
interior tunnel (see red square) and breaking the exterior torus. Note that no
new handles are introduced.

VIII. C ONCLUSION

We present a novel volumetric method for removing topo-
logical errors on solid models in the form of small handles
resulted from surface reconstruction. Our method is based
on computing a skeleton representation using morphological
operations on an adaptive grid structure. For each handle
removed, either by cutting the ring or by filling the tunnel,
our method guarantees not to introduce additional handles.
In addition, large models can be processed at very high
resolutions in an efficient manner.

Our current method has several limitations, and we are inves-
tigating possible solutions as part of our future research.First,
just as other volumetric mesh-repair methods [16], [17], [23],
our approach requires the entire input model to be converted
to and from a volume grid, and loss of geometric details
may occur when the input is in polygonal format (despite
the fact we use vertices directly sampled from the original
geometry, see Section IV.C). A possible extension is to apply
our volumetric repair only to portions of a mesh that have
been identified to contain topology errors using mesh-based
approaches. This hybrid idea has already been realized in a
different setting for repairing geometric errors on CAD models
[30].

Second, like previously proposed measures of handle size
based on surface area [15] and geodesic loop lengths [17],
our cross-section-area-based measure is not always indicative
of a feature handle versus a topological error. Similarly, cutting
and filling may not be the best way to resolve handles in all
cases. The right measure and removal scheme should consider
the source of topological errors, which varies by how the

input model was created (e.g., from scanned data, using CAD
software, from medical images, etc.). Although we do not
assume a particular source of topological errors in this paper,
it will be interesting to examine new measures that cater to
specific types of input models, and new ways for resolving
handles (e.g., approximating small entangling handles on an
otherwise smooth surface using a single smooth patch).

Moreover, we will investigate improved thinning methods that
extend recent level-set techniques [29] on uniform grid to
ensure a uniform thinning speed on adaptive grids, which will
yield a smoother skeleton as well as handle cuts with less
bias towards axes directions. Such thinning techniques will be
useful in general for extracting shape-preserving skeletons of
large models.
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APPENDIX I
TOPOLOGY PROPERTY OFESO ISO-SURFACE

Proposition 1: Let M denote the iso-surface on a valid ESO
grid with objectV and backgroundV. ThenM is a crack-free,
2-manifold surface satisfying equation 4.

Proof:

1) Crack-free surface: Applying Dual Contouring, each
edge (or face) on the iso-surface is dual to a non-empty
face (or edge) in the composite grid̃G. Since each non-
empty grid face always contains an even number of non-
empty grid edges, each edge on the iso-surface is shared
by an even number of faces, and the surface is closed.

2) Manifold surface: Consider a non-empty facef̃ in the
composite gridG̃. When G is valid, an elementσ in
G (or dual grid Ĝ) must be positive (or negative) if
some element containingσ is positive (or negative). As
a result, positive points and negative points inf̃ always
form two edge-connected components. By duality, the
iso-surface edge dual tõf is shared by two polygons.
Similarly, we can show that the positive points and
negative points in a non-empty cell in the composite grid
G̃ always form two connected components, and hence
the iso-surface vertex dual to the cell is contained in a
manifold neighborhood.

3) χ[V] = χ[V]: Since eachN-D element in theĜ\V is dual
to an (3−N)-D element inV, we haveχ[V]− χ[V] =
χ[Ĝ]. On the other hand, observe thatĜ is constructed
by gluing the interior elements to a single outside point,
which topologically forms a genus-0 surface in 4D.
Hence we haveχ[V]−χ[V] = χ[Ĝ] = 0.

4) χ[M] = χ[V] + χ[V]: Consider the decomposition of
G̃ into non-empty elements (̃M), elements containing
only positive points (̃V) and elements containing only
negative points (̃V). Note thatχ[V] = χ[Ṽ] and χ[V] =

χ[Ṽ]. Using Dual Contouring, eachN-D element onM
is due to a non-empty(3−N)-D element inG̃, hence
χ[M] = −χ[M̃]. For the same reason thatχ[Ĝ] = 0, we
haveχ[V]+ χ[V]−χ[M] = χ[G̃] = 0.

5) c[M] = c[V] + c[V]− 1: The connected components of
V and V can be represented as nodes in a connected,
acyclic graph where each edge denotes a connected
piece of surface separating an object component and a
background component. The equality therefore holds by
graph theory.
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