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Abstract. This paper presents automatic methods to extract and recon-
struct industrial site pipe-runs from large-scale point clouds. We observe
three key characteristics in this modeling problem, namely, primitives,
similarities, and joints. While primitives capture the dominant cylin-
dric shapes, similarities reveal the inter-primitive relations intrinsic to
industrial structures because of human design and construction. Statisti-
cal analysis over point normals discovers primitive similarities from raw
data to guide primitive fitting, increasing robustness to data noise and
incompleteness. Finally, joints are automatically detected to close gaps
and propagate connectivity information. The resulting model is more
than a collection of 3D triangles, as it contains semantic labels for pipes
as well as their connectivity.

1 Introduction

3D digital models for industrial sites are crucial in many applications, including
operator training, disaster simulations and response planning. As a dominant
feature of industrial sites, pipe-runs are an important part of operations and
maintenance. In older facilities, initial CAD models may not exist or are out of
date, prompting the need for creating new models. While modern laser scanners
can produce dense point clouds capturing the surface geometry, the automated
transformation of point clouds to pipe-run models including cylinder geometry
and accurate connectivity remains an open problem.

A popular strategy of 3D reconstruction from point scans is to simplify a tri-
angular mesh that minimizes the geometric fitting error with respect to the input
points (e.g., [2,5,14]). However, pure data-driven methods (e.g., Ball-Pivoting Al-
gorithm [2]) have no capability to simplify or filter noisy input data and generate
3D meshes with rough surfaces and cracks that are faithful to the point scans
(e.g., Figure 2(d)). What is more, the resulting triangles contain no structural
semantic or connectivity data.

Another strategy of reconstruction attempts to fit primitives (e.g., cylinders,
spheres and planes) to the raw data, capturing geometric information conveyed
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in the input points (e.g., [11,24,23]). This strategy is well-suited to industrial
sites since most parts of them are composed of primitive shapes ([12,20,21]).
However, such methods rarely extract complete pipe-runs with accurate con-
nectivity. Moreover, bottom-up primitive fitting adopted in these methods is
non-robust due to sensitivity to noise and outliers (Figure 2(e)).

We present an automatic robust method to reconstruct pipe-runs in 3D point
clouds (e.g., Figure 1). As cylindric shapes are often the dominant geometry of
interest in such sites, we focus on methods to reconstruct pipes and joints. In
addition, we make use of global similarities because they are more stable than
local features in the noisy and complex input data. Our method differs from prior
uses of global regularities enforced as a post-process (e.g., [18]). The effective-
ness of post processing is bounded by the unreliable initial primitive detection
(e.g., Figure 2(f)). Instead, we introduce global similarities in the early detec-
tion stage to improve the primitive detection and fitting processes. Finally, to
reliably capture primitive junctions and propagate connectivity between primi-
tives, we detect joints between adjacent pipes. Our combined methods robustly
reconstruct complete pipe networks from point clouds of industrial structures
(e.g., Figure 2(b)(c)).

Fig. 1. Given a point cloud of industrial structures (a), our method automatically
extracts a pipe axis network (b) and reconstructs pipe-runs (c)

Fig. 2. Given a real-world scan of industrial structures (a), we show 3D reconstruction
results from different approaches: (b) extracted pipe axis network by our approach, (c)
reconstructed pipe-runs by our approach, (d) Ball-Pivoting Algorithm [2], (e) RANSAC
algorithm [23], and (f) GlobFit [18]
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2 Related Work

2.1 Modeling from Point Clouds

A general strategy of 3D reconstruction from point clouds is to simplify a tri-
angular mesh model that minimizes the distance between the input points and
the mesh surface. Research efforts following this strategy are usually known as
data-driven reconstruction because they take the input data as truth and make a
trade-off between the size of the mesh and the geometry fitting error [2,14]. Dif-
ferent heuristics are introduced to produce modeling preferences such as smooth-
ness [3,17] and sharp feature [9]. Data-driven reconstruction has the advantage
of generality and adaptation to a variety of input point clouds. However, none of
these methods can produce semantic or connectivity information, which limits
their application.

Introducing prior knowledge of object shapes can significantly reduce the solu-
tion space and thus simplifies the reconstruction problem. For instance, Schnabel
et al.[23] present an efficient RANSAC approach to detect primitive shapes from
point clouds. Hofer et al.[13] adopt line geometry for the recognition and recon-
struction of 3D surfaces. Many methods of fitting primitives are designed for
reverse engineering such as [1]. Another existing method employs Hough trans-
form [15]. Even though efforts have been made to reduce their space and time
complexity [21], memory size limits still make these methods impractical for
large-scale input.

2.2 Global Similarity in Reconstruction

In addition to the prior knowledge of primitive shapes, higher level of knowl-
edge representing the similarities and relations between primitive elements are
also introduced and explored by Li et al.[18]. This work deals with small scale
objects and produces primitives exhibiting global relations. However, as stated
in Section 1, it relies heavily on fitting quality of primitives, thus loses accuracy
when dealing with complicated industrial structures. Our approach, on the other
hand, overcomes this drawback by introducing similarities among primitives in
an early stage, thus it is more successful at handling large-scale industrial sites.

Top-down geometry reconstruction is studied by Chen and Chen [4]. It em-
ploys statistical models on point normals to detect planar regions. A similar
strategy in our approach focuses on reconstructing the cylinders and joints dom-
inating in industrial sites.

2.3 Pipe-Run Reconstruction

The problem of pipe-run reconstruction has drawn much attention in both
academia and industry. For instance, Liu et al.[19] attempt to reconstruct pipeline
plants by reducing the reconstruction problem into a set of circle detections.
However, their work uses prior knowledge of specific scenes such as the ground
plane. Their assumption that pipes are either orthogonal or parallel to the ground
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is not general (e.g., Figure 2). Fu et al.[10] adopt local RANSAC detection of pipes
and uses standard elbow pieces to connect pipes. This method produces connected
pipe-runs but only handles joints of some pre-defined size and shape. Commercial
software (e.g., [6]) is also available to interactively reconstruct pipe-runs. However,
these products usually require substantial manual work. Our method, on the other
hand, is fully automatic without any user intervention.

3 Overview

Our processing pipeline accepts point clouds as input and models pipe-runs in
the scene. It is composed of the following steps (Figure 3).

Fig. 3. Our modeling pipeline. Normals of input points are estimated and projected
onto a Gaussian sphere, where patterns of great circles are detected to determine orien-
tations of cylinders. Points within the same orientation are further separated to decide
placement of different primitives. Orientation detection and placement extraction are
iteratively performed until all primitives are detected. Joints between cylinders are then
detected and generated to connect pipes into complete pipe-runs in the final models.

– Global Similarity Acquisition: We make a key observation that discov-
ering global similarities is more robust than fitting primitives as the first
stage. The reason is that global similarities appear more stable than local
features in the noisy input point clouds. Thus, the first step of our approach
analyzes the orientations of cylinders since they often exhibit similarities due
to common design and construction practices. Statistical analysis on point
normals is applied for extracting orientations of primitives.

– Primitive Detection: We use the global similarity information extracted
from the last step to reduce the degrees of freedom of primitive fitting. This
sequence significantly increases the robustness of primitive detection relative
to the use of only local data for fitting. Points with the same orientation are
projected onto an orthogonal plane used to detect 2D circles. Cylinders are
detected within points contributing to the circle projections.

– Joint Reconstruction: The preceding stage typically extracts a large num-
ber of disconnected pieces of pipes. The next stage links them into a fully-
connected pipe network. Three kinds of joints (i.e., T-junctions, curved joints
and boundary joints) are constructed to connect pipes smoothly.
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4 Global Similarity Acquisition

While global similarities exist in any portions of an industrial scene point cloud,
we observe that local sub-regions usually exhibit more consistent similarities
than that in the whole scene. Therefore, we divide the whole scene into uniform
cubic sub-volumes to process separately, and then seamlessly merge the results
together in a later stage. This divide-and-conquer strategy is efficient for dis-
covering global similarities. It also enables our system to handle arbitrary-sized
input without encountering memory size limitations.

The most significant global similarities are orientations of cylinders. In a lo-
cal region, cylinders tend to group into a few directions, denoted as principal
directions in this paper. We detect these principal directions by adopting the
following fact: if a point lies on a cylinder, its normal is perpendicular to the
cylinder axis. Therefore, the point normals from cylinders of the same direction
d will all be perpendicular to d. When mapped onto a Gaussian sphere, they
will distribute as the great circle that is perpendicular to d, as illustrated in
Figure 4(a). Therefore, we detect principal directions by mapping all the point
normals onto the Gaussian sphere and detect great circle patterns. In the ideal
case without noise, RANSAC [8] will reliably detect great circles. In particu-
lar, we randomly choose a pair of normals (ni,nj), compute a perpendicular
direction

d = ni × nj , (1)

and validate the direction d with the number of points on the corresponding
great circle, i.e., the size of set {p∣∣1− |np ·d| < ε}. Once a principal direction is
detected, we remove the points that contribute to that direction, then iteratively
perform the detection process until all the principal directions have been found
in this local region. In practice, however, the data is noisy and the points form
thick rings around a great circle (e.g., green samples in Figure 4(a)). Thus a sim-
ple RANSAC becomes unstable and hard to converge. We adopt unsupervised
clustering in the space of cylinder directions to solve this problem. In particular,
we choose many random point pairs and compute cylinder direction candidates

Fig. 4. The process of global similarity acquisition: point normals are projected onto
a Gaussian sphere (a) where great circles are detected by transforming to a cylinder
detection sphere (b); points are then segmented based on cylinder orientation (c)
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that lie on a spherical map of potential cylinder direction (Figure 4(b)). The intu-
ition is that even with noisy normal directions, the computed cylinder directions
will lie close to the true principal direction. Therefore, we use Mean-shift [7] to
detect modes on the spherical map of potential cylinder directions. In particular,
starting from a random sample x, it is iteratively updated with:

x←
∑

xi∈N(x)K(‖ x− xi ‖)xi
∑

xi∈N(x)K(‖ x− xi ‖) , (2)

where K(·) is Gaussian kernel function. After each iteration, the sample center
x is not guaranteed to stay on the sphere. Therefore, we coerce it back onto the
sphere. The centers of the modes are adopted as the principal directions in this
local region.

Segmentation: A by-product of global similarity acquisition is the point seg-
mentation based on cylinder orientations (Figure 4(c)). In particular, we identify
points within a thick stripe on the Gaussian sphere as a category with the same
cylinder orientation.

5 Primitive Detection

So far we have extracted principal directions of cylinders. In this section we
show how global information helps extracting cylinder primitives. This task is
accomplished in two steps: first, cylinder positions are discovered by mapping
associated points on a plane and detecting circles; second, cylinder boundaries
are determined.

5.1 Cylinder Position Calculation

We take points belonging to cylinders of the same direction d. Intuitively, by
mapping these points onto a plane that is perpendicular to the cylinder direc-
tion d (e.g., Figure 5(a)), the projected points exhibit circular patterns (e.g.,
Figure 5(b). Therefore, instead of fitting 3D cylinders, we detect circles on a 2D
projection plane of direction d.

Fig. 5. The process of calculating cylinder positions: segmented points are projected
to an orthogonal plane (a), where circular patterns are detected (b) by transforming
to a circle-center map (c)
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We also note that the normals of points can be projected onto the projection
plane as 2D directions pointing either towards or outwards the cylinder center
c̃. Therefore, two projected points and normals are enough to determine a circle
on the projection plane. Specifically, given two 2D points as p̃, q̃ and their 2D
normals as ñp, ñq, the circle center c̃ is determined by the intersection of two
lines L1(u) = p̃+ uñp and L2(v) = q̃+ vñq. The radius r is then calculated by

r = |c̃p̃|+|c̃q̃|
2 , if |c̃p̃| ≈ |c̃q̃|.

However, in the presence of noise, projected cylinder points are distributed
near circles (e.g., Figure 5(b)). To address this issue, we choose many point pairs
to get a collection of candidate circles. Our observation is that these candidate
circles tend to form clusters (e.g., Figure 5(c)) and the centers of clusters approx-
imate cross-sections of cylinders. Mean-Shift algorithm [7] is adopted to detect
these clusters, corresponding to cylinders and their associated points.

5.2 Cylinder Boundary Extraction

Given the positions of cylinders, the remaining parameters to be determined
are the boundaries (i.e., the start and end of the cylinder axis). End points
are determined by the point coverage along cylinder surfaces. To be specific,
we discretize the maximum discovered cylinder extents into small axial sections.
The existence of each section is examined and the verified ones are reconstructed
into contiguous cylinder pieces (e.g., Figure 6(b)).

Pipe segment existence is based on two coverage tests. Axis coverage is a
simple measure of point density per linear length of pipe. We set a minimum
threshold for the total number of points along a valid pipe segment. Cross section
coverage is a measure of the distribution of points around a pipe axis. We observe
that plane normals can easily be mistaken for sides of cylinders by our algorithm.
To avoid this, we require cylinders to exhibit more than 180-degrees of cross-
section coverage.

In real-world scans, the gaps along pipes (e.g., Figure 6(a)) are usually cre-
ated with data incompleteness due to occlusions, data loss, and noise. To avoid
over-segmenting a continuous pipe, we apply morphological operations of open-
ing and closing to smooth the result. (e.g., Figure 6(c)).

Fig. 6. Given incomplete scans of pipes (a), cylinder boundaries are determined by
the point coverage along cylinder surfaces (b) and smoothed using morphological
operations (c)
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6 Joint Reconstruction

So far we have detected all the cylinder primitives in the scene. To reconstruct
complete and fully-connected pipe-runs, we also need to link these cylinders to-
gether. We achieve this by introducing joints. Three categories of joints (i.e.,
T-junctions, curved joints and boundary joints) are detected in our system (e.g.,
Figure 7). T-junctions are extensions of one cylinder merging into another cylin-
der. Curved joints are elbows connecting two cylinders to allow a change of di-
rection. Boundary joints are cylinder segments that fill small gaps between two
cylinders. The gaps usually appear at the boundary of dividing sub-volumes.

6.1 Positions and Types of Joints

Our first thought was to detect joints as primitives like cylinders. However, it is
not a trivial problem since joints are either two small (T-junctions and bound-
ary joints) or have a complicated shape far from a simple primitive with a few
parameters (curved joints). We observe that joints must connect two nearby
cylinders. Therefore, we hypothesize all the possible joint locations and shapes
and then select the most likely cases based on agreement with the point cloud
data. Given the huge number of cylinders detected in the preceding stages, enu-
merating all candidate cylinder pairs would be impractical. Thus we employ
several important heuristic criteria for joint positions (Figure 8(a)). Joint ra-
dius, gap distance (defined as the nearest distance between central lines), skew
and angle are limited to reasonable ranges that are functions of the connect-
ing pipe diameters. We thereby ensure that the connecting cylinders are nearby,
similar-sized, co-planar and non-parallel for T-junctions and curved joints (or
parallel for boundary joints).

To decide types of hypothetic joints, noting that all joints include at least one
cylinder end, we examine extensions of cylinder ends. If an extension intersects
with another cylinder, our hypothesis is a T-junction. If an extension intersects
the extension of another cylinder, our hypothesis is a curved joint. If an extension
coincides with another cylinder, our hypothesis is a boundary joint.

Fig. 7. Three types of joints included in our system: (a) T-junctions, (b) curved joints,
and (c) boundary joints
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Fig. 8. (a) Four criteria of joint positions. (b) The process of calculating major radius
of curved joints.

6.2 Reconstruction of Joints

The reconstruction of T-junctions and boundary joints is straight-forward, be-
cause all of their parameters has been determined. For T-junctions, the joint can
be modeled by extending the end point of one cylinder into the axis of another
cylinder. For boundary joints, we reconstruct a cylinder connecting two adjacent
ones.

If two cylinders are connected with a curved joint, the only free parameter is
the major radius. We determine the major radius of the optimal curved joint as
the one with the most points lying on its surface among the range of possible
major radius options. The intuition is that if we make every data point in the
hypothetical joint volume vote for radius values such that the joint surfaces
touch it, the value with most votes would be the optimal radius. The following
portion shows how to calculate the major radius for a given data point.

As shown in Figure 8(b), assume the end points of two cylinders are P1 and
P2 with corresponding direction d1 and d2. Since the two cylinders are near
co-planar, we first force them onto the same plane, and then calculate the in-
tersection of their axes as PI . The goal is to find the circle center C and major
radius R, so that the circle is tangent to both P1PI and P2PI . It can be shown
that C must lie on the interior bisector of ∠P1PIP2 (denoted as θ). If dC is the
unit direction of this bisector, then C and R can be expressed as:

C = PI + |CPI | · dC ,

R = |CPI | · sin θ

2
. (3)

For every data point P , we first need to decide which point (denoted as Q) on
circle C is the circle center of the cross section that contains P . It can be shown
that the line connecting projected point P ′ and C intersects circle C at Q. Since
|P ′Q| is known (|P ′Q| = √r2 − d2, where r is cylinder radius and d is projection
distance of P ), |CP ′| can be expressed by:

|CP ′| = R± |P ′Q|. (4)

Bringing Equation 3 into Equation 4 gives a quadratic equation of R, where R
can be solved.
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7 Experimental Results

To evaluate our method, we test the algorithm on both synthetic datasets and
real-world datasets. Synthetic data is created by subsampling CAD models. Var-
ious levels of noise and outliers are manually added to test robustness of different
methods. We also perform experiments on real-world scans of a large industrial
site containing a variety of pipes, joints and other structures. Our approach is
compared to both sequential RANSAC [23] and GlobFit [18] as post-application
of global similarities. For fair comparisons, we use the same set of parameters
throughout all experiments within each method.

7.1 Synthetic Dataset Experiments

Figure 9 shows that the RANSAC method [23] neglects global relationships of
primitives and gets lost in local errors. GlobFit [18] takes global similarities
into consideration, but is still bounded by the effects of initial RANSAC. Our
method, on the other hand, discovers global similarities before fitting primitives
and produces clean and accurate models.

Noise Experiments. To test the robustness of our algorithm, we add various
levels of noise to the input. Two types of noise are tested, i.e., surface noise
and background noise. Surface noise (KS in Figure 10) is random Gaussian

Fig. 9. Experiments on synthetic datasets. From left to right: input point cloud, our
result, RANSAC [23] result, GlobFit [18] result and ground truth.
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Fig. 10. Reconstruction under various noise levels. From top to bottom: input point
cloud, our result, RANSAC [23] result and GlobFit [18] result. KS stands for surface
noise and KB stands for background noise.

noise in the direction of surface normals. Background noise (KB in Figure 10)
is uniformly random noise in 3D space. Both types of noise are to simulate data
problems encountered in real world scans such as scanner hardware noise or
registration error. As shown in Figure 10, our results remain stable as the noise
level increases, while RANSAC [23] results are dramatically affected by noise,
even if global similarities are enforced as a post-process using GlobFit [18].

7.2 Real-World Dataset Experiments

Figure 11(b) showsmodels reconstructed from 381MLiDAR points (Figure 11(a))
in a 25meters× 25meters× 10meters scene. In pre-processing,we employ a voxel-
grid method [22] to make the surface point density more uniform.We observe that
planar objectsmay cause problems for ourmethod, sowe pre-filter points in planar
areas (occupy 49.5% of points) using a method presented in [16]. Our method suc-
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Fig. 11. Experiments on a real-world dataset: (a) input point cloud (1/40 subsampled);
(b) pipe-run reconstruction

Fig. 12. Extracted pipe axis networks on real-world datasets. From left to right: input
point cloud, our result, RANSAC [23] result, GlobFit [18] result and ground truth.

cessfully extracts pipe-run networks within 24 hours on a consumer-level desktop
(Intel Core i7-3610QM 2.30GHz CPU with 6GB RAM). A detailed comparison
with commercial software [6] is included in the supplementary material.

Toquantitatively evaluatepipe-runextraction,wemanuallymarkpipenetworks
of three sub-volumes to be compared with automatically extracted pipe-runs
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Table 1. Quantitative evaluation of results shown in Figure 12

Models
in Fig-
ure 12

First row Second row Third row
RANSAC

[23]
GlobFit

[18]
Our ap-
proach

RANSAC
[23]

GlobFit
[18]

Our ap-
proach

RANSAC
[23]

GlobFit
[18]

Our ap-
proach

Precision 0.804 0.603 0.603 0.745 0.714 0.481 0.629 0.594 0.402
Recall 0.938 0.748 0.953 0.486 0.476 0.986 0.630 0.625 0.915

(Figure 12). The pipe axes are sampled by an interval of 1cm so that each sample
represents 1cm of pipe. These sampled points are compared based on proximity to
calculate precision and recall for our method, RANSAC [23] and GlobFit [18] (Ta-
ble 1). Our method achieves scalability by fully utilizing global similarities. Small
cylinders are successfully captured (e.g., the handrails and ladders in Figure 12,
third row) because their orientations fall into principal directions in the scene and
the detected orientations become a strong constraint in cylinder fitting.

8 Conclusion

We describe a novel robust processing pipeline to automatically extract pipe-runs
from large-scale 3D point clouds. Our approach introduces the global information
in an early stage by applying unsupervised analysis on point normals, and treats
orientation detection and placement extraction as two separate sub-problems,
thus avoiding degradation by local data errors. Joints are detected and modeled
to recover connectivity information and smoothly connect cylinders.
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